Qu’est-ce que Pandas ? 1

Pandas est une bibliothéque open-source pour Python qui fournit des structures de données haute
performance et des outils d’analyse de données.

Elle est particulierement utile pour :

O Manipulation de données:
¢ importation de données structurées : par exemple au format CSV, «comma separated values»,
générées par t shark ou bien du json retourné par un webservice ;

¢ nettoyage : éliminer les informations incomplétes ou inutiles ;
¢ transformation : changer de type, interprétation de dates;
¢ préparation des données pour 'analyse : sélectionner par condition;;

O Analyse de données:
¢ statistiques descriptives: sur les valeurs numériques ou non;

¢ enrichissement: calculer de nouvelles informations et les ajouter;
¢ regroupement de données : regrouper les données par criteres ;

O Visualisation de données:
¢ intégration avec les bibliotheques comme Matplotlib ou Seaborn pour créer des visualisations.

¢ création de rapport au format json, html ou csv.

Acces aux ressources Web : le module requests

Ce module doit étre installé :

O— xterm

$ pip install requests

Il est nécessaire de créer et/ou gérer un environnement virtuel avec le module venv

O acces aux ressources par la méthode «classique» GET :

\reponse = requests.get ('https://p-fb.net')

O éventuellement avec des parameétres dans 'URL:

reponse = requests.get ('https://monsite.org’',
params={'lang':'fr', 'contenu':"'json'})

O acces aux ressources par la méthode POST avec passage de parameétres :

\reponse = requests ('https://monsite.org', data = {'key' : 'value'})

O acces avec des headers choisis, comme pour passer un token d’autorisation :

reponse = requests('https://monsite.org’,
headers = {'Authorization' : 'Bearer ##TOKEN##'})

Gestion de la réponse

Lobjet reponse:
> reponse.status_code: le code de retour HTTP (200 Ok, 404 Not Found);
> reponse.headers: les entétes de la réponse;
> response.content: le contenu au format JSON, HTML ou binaire;
En utilisant, reponse. json () on traite la réponse au format JSON.

Importation de données 3

> au format CSV:
\>>> df = pandas.read_csv ('mes_donnees.csv') \

> au format XML : Il faudra installer le module «1xm1»:
O— xterm

$ pip install 1xml “

Ce qui permet de lire le contenu d’un fichier au format XML :
[>>> df = pandas.read_xml ('fichier.xml") |

> convertir un dictionnaire :

>>> mon_dictionnaire = { 'coll' : [1, 2, 31, 'col2'" : [4, 5, 61, 'col3'" : [7, 8, 91 }
>>> df = pandas.DataFrame.from_dict (mon_dictionnaire)
>>> df
coll col2 col3
0 1 4 7
1 2 5 8
2 3 6 9
>>>

Les lignes sont numérotées chacune en commencgant a 0 (colonne de gauche).
> convertir des données au format json:

>>> r = requests.get ('http://ipinfo.io/"'

>>> df = pandas.DataFrame(r.json(), index=[0])
>>> df
ip hostname city ... postal timezone readme
0 lg.lO.lO.lO 10-10-10-10.dsl.ovh.fr Paris ... 75000 Europe/Paris https://ipinfo.io/mi5512J
gaut

[1 rows x 10 columns]

Il faut compléter les données avec un index [0].
Lutilisation de df = pandas. json_normalize (r. json ()) réalise le méme travail.

v -
Sélectionner les colonnes
>>> df = pandas.DataFrame ({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob' 1,
'Age' : [12, 18, 25, 25, 161 })
>>> df
Nom Age
0 Pierre 12
1 Paul 18
2 Jean 25
3 Alice 25
4 Bob 16

Afficher les premiéres ligne de la table pandas:

Afficher les derniéres ligne de la table pandas:

|>>> df.head(10) # les 10 premieres

| [>>> df.tail(10)

les 10 derniéres |

>>> df.Nom >>> df ['Nom']

0 Pierre 0 Pierre

1 Paul 1 Paul

2 Jean 2 Jean

3 Alice 3 Alice

4 Bob 4 Bob

Name: Nom, dtype: object Name: Nom, dtype: object

On peut accéder a une colonne en utilisant directement le nom de la colonne, ou alors on peut la passer
en chaine dans un accés a la maniére d’un dictionnaire (obligatoire si le nom contient un espace).

Obtenir les données uniques d’une colonne :

>>> df[['Age', 'Nom'] | On peut sélectionner plusieures colonnes en passant une liste.
Age Nom

0 12 Pierre

1 18 Paul

2 25 Jean

3 25 Alice

4 16 Bob

>>> df.Age.unique ()
array([12, 18, 25,

l6])

Sélectionner des lignes/colonnes et des tranches par index

Utilisation de la méthode iloc

>>> df.iloc[0]
Nom Pierre
Age 12
Name: 0, dtype: object

> sélectionner un élément:

>>> df.iloc[0, 0]
'Pierre'’

> sélectionner une tranche:

>>> df.iloc[2:4]
Nom Age

2 Jean 25

3 Alice 25

On remarque que I'on conserve les valeurs d’index originales.
> sélectionner une «double tranche» ou un sous tableau:

>>> df.iloc[1:3, 1]

0 12

1 18

Name: Age, dtype: int64

> modifier une valeur:

>>> df.iloc[0,0] = 'Arthur'
>>> df
Nom Age
0 Arthur 12
1 Paul 18
2 Jean 25
3 Alice 25
4 Bob 16

Création d’'index

Créer un index a partir d’'une colonne:

>>> df
Nom Age
0 Arthur 12
1 Paul 18
2 Jean 25
3 Alice 25
4 Bob 16
>>> df.set_index('Nom', inplace = True)
Age
Nom
Arthur 12
Paul 18
Jean 25
Alice 25
Bob 16
>>> p.loc['Jean']
Age 25
Name: Jean, dtype: inté64

Réinitialiser I'index sur les données extraites:

La méthode 1oc fonctionne maintenant sur cet
index.

>>> df

Nom Age
0 Arthur 12
1 Paul 18
2 Jean 25
3 Alice 25

4 Bob 16
>>> df = df.iloc[2:4]
>>> df

Nom Age

2 Jean 25

3 Alice 25

>>> df.reset_index(inplace = True, drop=True)
Nom Age

0 Jean 25

1 Alice 25

Acces aux éléments en lecture/écriture

Acces en lecture
Acces a une valeur en mode [colonne] [ligne]:

>>> df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob' 1,
'Age' : [12, 18, 25, 24, 161 })
>>> df
Nom Age
0 Pierre 12
1 Paul 18
2 Jean 25
3 Alice 24
4 Bob 16
>>> df['Age'] [2]
np.int64 (25)

Acces avec la méthode 1loc enmode [ligne, colonne]:

>>> df.loc[2, 'Age']
np.int64 (25)

Acceés en écriture
On utilise l'opérateur 1oc:

>>> df.loc[2, 'Age'] = 35
>>> df
Nom Age

0 Pierre 12

1 Paul 18

2 Jean 35

3 Alice 24

4 Bob 16

Laccés direct df ['Age '] [2] = 35 estdeconseille car plus lent.

Le plus simple ? = Utiliser tout le temps la méthode loc.

Conversion du format de données

Obtenir la liste des colonnes et leur type:

df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'],
'Age' : [12, 18, 25, 24, 16 1 })

>>> df.columns

Index(['Nom', 'Age'], dtype='object')

>>> df.dtypes

Nom object

Age inte4

dtype: object

Conversion de format numérique :

>>> df['Age'] = df['Age'].astype(float)
>>> df
Nom Age

0 Pierre 12.
1 Paul 18.
2 Jean 35.
3 Alice 24.
4 Bob 16.
>>> df.dtypes
Nom object
Age float64
dtype: object

O OO OO

Ici, on convertit les données d’entier vers flottant.
Conversion de date:

date = '22/Mar/2009:07:00:32 +0100"'

temps = pandas.to_datetime (date, format='%d/%b/%$Y:%$H:%M:%S %z', utc = True)
>>> temps

Timestamp ('2009-03-22 06:00:32+0000"', tz='UTIC")

Consulter les données incomplétes 9

Afficher les données ou des informations sont manquantes:

>>> df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'], 'Age' : [12, 18
?53 ?4, 16], 'Profession' : ['ingenieur', 'programmeur', 'programmeur', 'ingenieur', 'programmeur;J
>>> nouvelle_df = pandas.DataFrame.from_dict ({ 'Nom' : ['Albert'], 'Age' : [33] })
>>> pandas.concat ([df, ndf])
Nom Age Profession
0 Pierre 12 ingenieur
1 Paul 18 programmeur
2 Jean 25 programmeur
3 Alice 24 ingenieur
4 Bob 16 programmeur
0 Albert 33 NaN

>>> nouvelle_nouvelle_df = pandas.concat ([df, ndf]
>>> nouvelle_nouvelle_df

Nom Age Profession
0 Pierre 12 ingenieur
1 Paul 18 programmeur
é Aifiz 22 pr?igzﬂiii ,{n umpy . nan = valeur non numeérique (Not A Number)j
4 Bob 16 programmeur .~
0 Albert 33 NaN .’
>>> nouvelle_nouvelle_df.isnull ()
Nom Age Profession
0 False False False
1 False False False
2 False False False <
3 False False False ,{Tableau de boo/eens]
4 False False False Pt
0 False False True .’
>>> nouvelle_nouvelle_df.isnull () .sum()
Nom 0
Age 0
Profession 1

dtype: inté4

Si on veut sélectionner les éléments avec une valeur définie: notnull () aulieude isnull ()

Ajout/Suppression de colonnes et de lignes 10

O Ajouter une colonne vide:
[>>> df = df.assign(nouvelle_colonne = None)]

Le nom de la nouvelle colonne est exprimée sans étre inclus dans une chaine, et il faut mettre a jour la variable df
pour que la table soit modifiée.

O Ajouter une ligne:

>>> nouvelle_ligne = pandas.DataFrame ({ 'Colonnel' : [42], 'Colonne2' : [50] })
>>> pandas.concat ([df, nouvelle_ligne], ignore_index = True)

Les colonnes non renseignées prendront la valeur NaN (numpy . nan, testable avec pandas.isna ()).

O Supprimer une colonne:
[>>> df .drop ('nom_colonne', axis=1, inplace=True)]

Le parametre inplace indique de modifier la table elle-méme au lieu de retourner une copie.

[>>> df.drop(df.columns[1], axis=1, inplace=True)]

La colonne est désignée par son index.

O Supprimer une ligne:
[>>> df.drop (1, inplace = True)

Ici, c’est une ligne qui est supprimée par son indice.

O Supprimer une ligne par une condition :
[>>> df = df[df['Sauts'] > = 2]

Ici, on peut supprimer les lignes dont la valeur pour la colonne "Saut’ est inférieure a 2.

O Supprimer les lignes dont les données sont insuffisantes :
[df.dropna(inplace = True)

Supprime les lignes pour lesquelles il y a une valeur None dans une de ses colonnes.

Ve L Vd
Création de nouvelles colonnes calculées 11

>>> df = pandas.DataFrame({ 'Nom' ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'], 'Année embauche'

[2018, 2019, 2016, 2020, 2017], 'Profession' ['ingenieur', 'programmeur', 'programmeur', 'inge
nieur', 'programmeur'] }) <J
>>> df

Nom Année embauche Profession
0 Pierre 2018 ingenieur
1 Paul 2019 programmeur
2 Jean 2016 programmeur
3 Alice 2020 ingenieur
4 Bob 2017 programmeur
>>> df['Ancienneté'] = 2024 - df['Année embauche']
>>> df
Nom Année embauche Profession Ancienneté

0 Pierre 2018 ingenieur 6
1 Paul 2019 programmeur 5
2 Jean 2016 programmeur 8
3 Alice 2020 ingenieur 4
4 Bob 2017 programmeur 7
>>> mon_dictionnaire = { 'coll' [1, 2, 31, 'col2' [4, 5, 6 1, 'col3' [7, 8, 91 1}
>>> df = pandas.DataFrame.from_dict (mon_dictionnaire)
>>> df

coll col2 col3
0 1 4 7
1 2 5 8
2 3 6 9
>>> df['calcul'] = (df.col2 + df.col3)/ df.coll
>>> df

coll col2 col3 calcul
0 1 4 7 11.0 < ,
1 5 5 8 6 5 «[ecrasement des valeurs d’'une co/onne]

. ’

2 3 6 9 5.0 .’
>>> df['calcul'] = 0 .
>>> df

coll col2 col3 calcul
0 1 4 7 0
1 2 5 8 0
2 3 6 9 0

Ajout avanceés et sélection a l'aide d’'une fonction 12

Utilisation d’une fonction pour créer le contenu d’une nouvelle colonne

def ma_fonction (x) :
if x >= 18:
return True
return False

df = pandas.DataFrame ({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'],
'Age' : [12, 18, 25, 24, 16 1 })

df['Majeur'] = df['Age'].apply(ma_fonction)

print (df)

Avec la méthode app 1y, on applique la fonction sur chaque valeur de la colonne indiquée et on construit
ne nouvelle colonne dont on a donné le nom lors de l'affectation
O— xterm

Nom Age Majeur
0 Pierre 12 False

1 Paul 18 True
2 Jean 25 True
3 Alice 24 True
4 Bob 16 False

On peut alors filtrer les données sur cette nouvelle colonne :

>>> df[df ['Majeur'] == True]
Nom Age Majeur

1 Paul 18 True

2 Jean 25 True

3 Alice 24 True

>>>

On peut ne pas utiliser de fonction dans le cas ou la valeur est booléenne::

>>> selection = df['Age']>=18 >>> df[selection]

>>> selection Nom Age Majeur

0 False 1 Paul 18.0 True

1 True 2 Jean 45.0 True

2 True 3 Alice 24.0 True

3 True >>>

4 False On obtient le méme résultat.
Name: Age, dtype: bool

Sélection des éléments d’'une table par contenu ou expression réguliere

13

Avec la méthode .str.contains ('..."') etune simple chaine:

>>> selection = df['Nom'].str.contains('P"')
>>> selection
0 True
1 True
2 False
3 False
4 False
Name: Nom, dtype: bool
>>> df[selection]

Nom Profession
0 Pierre ingenieur
1 Paul programmeur

Ici, seul 'Pierre’ et 'Paul’ contiennent un 'P..
Utilisation d’expression réguliére :

[Series.str.contains(pattern, case=True, flags=0, na=nan, regex=True)

> pattern:séquence de caracteres ou expressions régulieres;

> case: si True, recherche sensible a la casse. Si False, recherche insensible a la casse;
> flags: Flags a passer directement au module re (par exemple : re.IGNORECASE).

> na: la valeur a mettre en cas de données manquantes;

> regex: SiTrue, utilise pattern en expression réguliere ou sinon comme une simple chaine.

>>> selection = df['Nom'].str.contains(r'~.*i.*e$', regex=True)

>>> selection # contient un True pour les noms contenant un 'i' et finissant par un 'e'
0 True

1 False

2 False

3 True

4 False

Name: Nom, dtype: bool

14

7 - L)
Sélection par conditions
df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'],
'Age' : [12, 18, 25, 24, 16],
'Profession' : ['ingenieur', 'programmeur', 'programmeur', 'ingenieur', 'programmeur']})
>>> df
Nom Age Profession
0 Pierre 12 ingenieur
1 Paul 18 programmeur
2 Jean 25 programmeur
3 Alice 24 ingenieur
4 Bob 16 programmeur
Utilisation directe de la dataframe:
>>> df[(df .Age >= 18) & (df.Profession == 'programmeur')]
Nom Age Profession
1 Paul 18 programmeur
2 Jean 25 programmeur
Utilisation de la méthode query:
>>> df.query (' (Age>=18) & (Profession == "programmeur")')
Nom Age Profession
1 Paul 18 programmeur
2 Jean 25 programmeur
Utilisation de la méthode 1oc:
>>> df.loc[(df.Age >= 18) & (df.Profession == 'programmeur')]
Nom Age Profession
1 Paul 18 programmeur
2 Jean 25 programmeur
Utilisation de la méthode iloc:
>>> df.iloc[2:4]
Nom Age Profession
2 Jean 25 programmeur
3 Alice 24 ingenieur

Remarques sur les erreurs les plus courantes 15

Incohérence de I'index

Lorsque vous sélectionnez des éléments d’'une «DataFrame», vous obtenez une nouvelle «Data-
Frame»...

= Mais, 'index est inconsistent, car il contient des «trous» pour chaque ligne de la table initiale non
sélectionnée !

Il est nécessaire de réinitialiser I'index :
O— xterm

>>> df_selection = df_selection.reset_index () “

Utilisation de données incomplétes

Si une ligne d’'une «DataFrame» ne possede pas de valeur pour une colonne, il peut étre impossible
d’appliquer un traitement dessus...

Il est nécessaire de supprimer les lignes ne possédant pas de valeurs:
O— xterm

>>> df_sans_ligne_incomplete = df[df['colonne'].notnull ()] “

Les valeurs absentes peuvent étre indiquées comme «NaN», «Not an Number», quand la colonne
contient des valeurs numériques.
=> |l est aussi nécessaire de réinitialiser I'index avec «reset_index () »...

Statistiques numériques

16

On utilise la méthode describe qui ne traite que les données entiéres ou flottante :

>>> df

Nom Age Profession
0 Pierre 12 ingenieur
1 Paul 18 programmeur
2 Jean 25 programmeur
3 Alice 24 ingenieur
4 Bob 16 programmeur
>>> df3.describe ()

Age
count 5.000000
mean 19.000000

std 5.477226
min 12.000000
25% 16.000000
50% 18.000000
75% 24.000000

max 25.000000

Pour traiter les données non numérique :

>>> df.describe (include="'object')
Nom Profession

count 5 5
unique 5 2
top Pierre programmeur

freq 1 3

Statistiques 17

Compter le nombre d’occurences de chaque valeur unique avec value_counts

Sur une série:

import pandas

s = pandas.Series(['a', 'b', 'a', 'c', 'b', 'b'])
print (s.value_counts()) # Sortie: a 2, b 3, c 1

Pour une table:
>>> df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'], 'Profession' : [
'ingenieur', 'programmeur', 'programmeur', 'ingenieur', 'programmeur'] } <J
>>> df
Nom Profession
0 Pierre ingenieur
1 Paul programmeur
2 Jean programmeur
3 Alice ingenieur
4 Bob programmeur
>>> df['Profession'].value_counts ()
Profession
programmeur 3
ingenieur 2
Name: count, dtype: int64
>>>

Ou:

>>> df.value_counts (subset = 'Profession')
Profession

programmeur 3

ingenieur 2

Name: count, dtype: into64

Ici, on utilise subset pour sélectionner la colonne (on peut aussi donner une liste de colonnes
['colonnel', 'colonneZ2'] cequidonne un comptage des différentes combinaisons uniques
des valeurs de ces colonnes).

Regrouper les données et trier 18
Utilisation de la méthode groupby :
>>> df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'], 'Age' : [12, 18
25, 24, 16], 'Profession' ['"ingenieur', 'programmeur', 'programmeur', 'ingenieur', 'programmeur;J
1)
>>> df.groupby ('Profession') ['Age'] .mean ()
Profession
ingenieur 18.000000
programmeur 19.666667
Name: Age, dtype: floaté64

On calcule I'age moyen des différentes professions.

Utilisation des méthodes groupby et count:

>>> df.groupby ('Profession') ['Profession'].count ()
Profession
ingenieur 2
programmeur 3
Name: Profession, dtype: int64
Pour trier suivant le contenu d’'une colonne:
>>> df.sort_values ('Age')
Nom Age Profession
0 Pierre 12 ingenieur
4 Bob 16 programmeur
1 Paul 18 programmeur
3 Alice 24 ingenieur
2 Jean 25 programmeur
>>> ndf = df.sort_values('Age', ascending=False)
>>> ndf
Nom Age Profession
2 Jean 25 programmeur
3 Alice 24 ingenieur
1 Paul 18 programmeur
4 Bob 16 programmeur
0 Pierre 12 ingenieur

Pour compter le nombre d’individus de chaque
profession.

On peut ensuite prendre les premiéres valeurs :

>>> ndf.iloc[0:2]

Nom Age Profession
2 Jean 25 programmeur
3 Alice 24 ingenieur

—| Attention I

Rénitialiser I'index du résultat:

[ndf.reset_index|()

Parcourir tous les éléments d’'une table

19

Avec iloc

for ligne in range(len(df)):
for colonne in range(len(df.columns)) :
print (df.iloc[ligne, colonne], " ", end = '")
print ()

O

— Xterm

Avec itertuples

Pierre 12 ingenieur
Paul 18 programmeur
Jean 25 programmeur
Alice 24 ingenieur
Bob 16 programmeur

for ligne in df.itertuples():

O

xterm

print (ligne.Index, ":", ligne.Nom, ligne.Age)

Une variante:

Pierre 12
Paul 18
Jean 25
Alice 24
Bob 16

B wWw NP O |

for ligne in df.itertuples():
print (ligne([0], ":", lignel[l], ligne[2])

xterm

Avec iterrows

Pierre 12
Paul 18
Jean 25
Alice 24
Bob 16

S wWw NP O |

for index, ligne in df.iterrows():

xterm

print (index, ":", ligne["Nom"], ligne["Age"]

Pierre 12
Paul 18
Jean 25
Alice 24
Bob 16

S wW N O |

Exportation des tables

20

> au formatcsv:

[>>> df.to_csv('mon_fichier.csv')

Crée un fichier.

> au format json:

[>>> df.to_json()

Retourne un chaine de caractéres.

> au format html :

[>>> df.to_html ()

Retourne une chaine de caractéres.
Un serveur Web qui appelle la fonction t ravail_pandas surhttp://localhost

:8000/:

from http.server import BaseHTTPRequestHandler, HTTPServer

class RequestHandler (BaseHTTPRequestHandler) :
def do_GET (self):
self.send_response (200)
self.end_headers ()
self.wfile.write(travail_pandas () .encode ('utf8'))

def run_server () :
server_address = ('', 8000)
httpd = HTTPServer (server_address, RequestHandler)
print ("Server running at http://localhost:8000")
httpd.serve_forever ()

def travail_pandas() :
Travail sur la table pandas
return df.to_html ()

run_server ()

Interfacage avec Scapy

21

On récupére une liste de paquets depuis un fichier au format pcap:

#!/usr/bin/env python3

from scapy.all import *
import pandas

Extraction des donnees pertinentes des paquets
def traiter_paquet (packet) :
on retourne un dictionnaire
if packet.haslayer ('IP'):
return {
'src_ip': packet['IP'].src,
'dst_ip': packet['IP'].dst,
}

les_paquets = rdpcap ("paquets_captures.pcap")

Extraction des infos sur tous les paquets IP
donnees = [{ 'IP' : p[IP].src } for p in les_paquets if IP in p]

Creer une table
df = pandas.DataFrame (donnees)

print (df)

On veut obtenir la liste des adresses IP source de ces paquets et la tranformer en une table pandas:

Pour chaque paquet, il faut:
> extraire 'adresse |IP source du paquet s’il contient un datagramme IP;
> créer un dictionnaire pour associer un «label» associé a I'adresse IP source
> ajouter ce dictionnaire a une liste;
= On peut utiliser une «list comprehension» pour faire ce travail.

> donner cette liste & pandas.DataFrame pour créer la table: le label sera utilisé pour associer les éléments entre eux et

nommer la colonne obtenue.

22

y . . .
Lecture d'un fichier et extraction
Contenu du fichier a analyser dans pandas. 192.168.10.23 : Paul
192.168.17.87 Pierre
192.168.47.98 Jacques
192.168.34.11 Alice
192.168.28.21 Bob
#!/usr/bin/env python3
import pandas
import sys
import re
nom_fichier = 'liste_machines.txt'
re_analyse = re.compile(r'~([.\d]+)\s*:\s*(.*)")
def traiter_ligne(l):
resultat = re_analyse.search(1l)
if resultat:
return { 'IP' : resultat.group(l), 'Utilisateur' resultat.group(2) }
try:
desc = open (nom_fichier, 'r');

except Exception as e:
printf (e.args)
sys.exit (1)

liste_infos = []
while 1:
ligne = desc.readline()
if not ligne:
break
ajout = traiter_ligne(ligne)
if ajout:

df = pandas.DataFrame (liste_infos)
print (df)

liste_infos.append(traiter_ligne(ligne))

En utilisation interactive 23

On désire analyser un fichier pcap contenant plus de 90 000 paquets et déterminer les adresses IP
source uniques:

>>> 1lp = rdpcap('nitroba.pcap')
>>> liste_adresses_ip_source = [p[IP].src for p in 1lp if IP in p]
>>> import pandas
>>> df = pandas.DataFrame({'IP' : liste_adresses_ip_source})
>>> df
IP
192.168.1.64
74.125.19.83
192.168.1.64
74.125.19.19
74.125.19.19

90374 192.168.15.
90375 192.168.15.
90376 192.168.15.
90377 192.168.15.
90378 192.168.15.

IOV N o)

I e

[90379 rows x 1 columns]
>>> len(df.IP.unique())
432

Il faut:
> récupérer la liste de ces adresses IP source;

D> créer un dictionnaire avec cette liste (le nom de la colonne sera IP;

D> créer la table pandas en passant ce dictionnaire a pandas .DataFrame et compter les adresses
uniques.

Pour aller plus loin

24

La méthode to_ frame permet de créer une colonne et de 'ajouter a la table:

>>> k = df.groupby ('Ik=df.groupby ('IP") ['IP'].count().to_frame('c')

Y
>>> k

la méthode to__frame

Q

IP

10.0.1.5
116.252.234.84
12.129.147.65
12.129.210.41
12.129.210.46

90.26.122.118
91.121.109.197
91.65.135.197
93.103.36.196
98.220.46.34

avec le nom de la nouvelle colonne

S

N
PR EROReOMN U

On peut ainsi appliquer un tri pour connaitre

[432 rows x 1 columns] .7 | quelles sont les adresses les plus présentes.

>>> k.sort_values('c', ascending=False).’

c
IP
192.168.15.4 34554
192.168.1.64 6818
208.111.148.6 3731
69.22.167.215 3635
74.125.15.159 3033
125.198.166.16 1
125.211.216.53 1
125.211.198.10 1
125.215.223.210 1
79.131.4.159 1

[432 rows x 1 columns]

=> La colonne count est ajoutée a la table.

Pour regrouper des colonnes dans une méme table

25

Ona: D> récupérer les adresses sources des différents datagramme IP et construit la table df ;
> récupérer les adresses destinations et construit la table df2 ;
I> on peut regrouper les deux colonnes dans une seule table:

>>> liste_adresses = [{ 'IP src' : p[IP].src} for p in lp if IP in p]
>>> liste_adresses_2 = [{ 'IP dst' : p[IP].dst} for p in lp if IP in p]
>>> df = pandas.DataFrame (liste_adresses)

>>> df2 = pandas.DataFrame (liste_adresses_2)

>>> df['IP dst'] = df2['IP dst'] .

>>> df N

SN WM PO

IP src
192.168.1.64
74.125.19.83
192.168.1.64
74.125.19.19
74.125.19.19

IP dst
74.125.19.83
192.168.1.64
74.125.19.19
192.168.1.64
192.168.1.64

N w Attention : il faut étre sir que les index des deux tables

font correspondre les bonnes données entre elles !

90374 192.168.15.1 239.255.255.250
90375 192.168.15.1 239.255.255.250
90376 192.168.15.1 239.255.255.250
1
4

,[On peut aussi utiliser un join avec: >>> df. join (df2)]

90377 192.168.15. 239.255.255.250 .7
90378 192.168.15. 74.125.19.99 .°

Il est plus sir de faire I'extraction directement depuis les paquets::

>>> liste_adresses = [{ 'IP src' : p[IP].src, 'IP dst' : p[IP].dst } for p in 1lp if IP in p]
>>> df = pandas.DataFrame (liste_adresses)
>>> df
IP src IP dst
0 192.168.1.64 74.125.19.83
1 74.125.19.83 192.168.1.64
2 192.168.1.64 74.125.19.19
3 74.125.19.19 192.168.1.64
4 192.168.1. 64

74.125.19.19

90374 192.168.15.1 239.255.255. 250
90375 192.168.15.1 239.255.255.250
90376 192.168.15.1 239.255.255.250
90377 192.168.15.1 239.255.255.250
90378 192.168.15.4 74.125.19.99
[90379 rows x 2 columns]

Pour afficher des coordonnées (Lattitude,Longitude) 26

import geopandas
import pandas
import matplotlib.pyplot

world_file_path = 'ne_110m_admin_0O_countries.shp'
gdf_world = geopandas.read_file(world_file_path)

df = pandas.DataFrame (
{

"Latitude": [48.8534, 45.5088]
"Longitude": [2.3488, -73.5878]

)

gdf_coordonnees = geopandas.GeoDataFrame (
df, geometry=geopandas.points_from_xy (df.Longitude, df.Latitude)

)

fig, ax = matplotlib.pyplot.subplots (figsize=(20,10))
ax.set_xticks ([])
ax.set_yticks ([])

]
gdf_world.plot (ax = ax, aspect = 'auto', color = "lightgray", cmap = "Pastel2", edgecolor = "black",
alpha = 0.5) <J
gdf_coordonnees.plot (ax = ax, color = "red")

matplotlib.pyplot.title("Basic Map of World with GeoPandas")
matplotlib.pyplot.show()

Pour télécharger la carte du monde :
https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/110m

/cultural/ne_110m_admin_0_countries.zip

Utilisationde t shark

27

On peut créer un fichier au format csv avec tshark:

O— xterm

tshark -r mon_fichier.pcap -T fields -e frame.number -e frame.time_epoch -e eth.src -e eth.dst -e
eth.type -e ip.src -e ip.dst -e ip.proto -E header=y -E separator=, -E quote=d > sortie.csv

O— xterm

>>> import pandas

>>> df = pandas.read_csv('output.csv')
>>> df

frame.number frame.time_epoch eth.src eth.dst eth.type
ip.src ip.dst ip.proto

0 1 1.216691e+09 00:1d:d9:2e:4f:61 00:1d:6b:99:98:68 0x0800
192.168.1.64 74.125.19.83 6.0

94409 94410 1.216707e+09 00:17:£2:e2:c0:ce 00:1d:d9:2e:4£:60 0x0800
192.168.15.4 74.125.19.99 6.0

[94410 rows x 8 columns]
Conversion des dates au format epoch vers un format "humain'

>>> df['frame.time_epoch'] = pandas.to_datetime (df['frame.time_epoch'], unit = 's')
>>> df.iloc[0]

frame.number 1

frame.time_epoch 2008-07-22 01:51:07.095278025

eth.src 00:1d:d9:2e:4f:61

eth.dst 00:1d:6b:99:98:68

eth.type 0x0800

ip.src 192.168.1.64

ip.dst 74.125.19.83

ip.proto 6.0

Name: 0, dtype: object

>>> df['eth.type'] .unique ()
array (['0x0800', '0x0806', nan], dtype=object)
>>> df[df['eth.type'].isna()]

frame.number frame.time_epoch eth.src eth.dst eth.type
ip.src ip.dst ip.proto
18792 18793 2008-07-22 04:29:43.273530006 00:14:d1:44:a0:f1 ff:ff:ff:ff:ff:ff NaN
NaN NaN NaN

Utilisationde t shark

28

On peut utiliser t shark pour récupérer le contenu des requétes http:

xterm

O

>>> import pandas

>>> df = pandas.read_csv('output.csv')

>>> df2 = df[df['http.request.method'].notna/()]

>>> df2[df2['http.request.method'].str.contains ('GET")]

frame.number frame.time_epoch ... http.request.method
http.request.uri

2 3 1.216691e+09 ... GET
/mail/”logout&hl*en

172 1.216691e+09 .. GET
/a/hBIhP7YAbeh5 B7SEoEBNJqOT Achgqu/spacer gif
94227 94228 1.216707e+09 .. GET
/firefox?client=firefox—-a&rls=org. mOlela en=U.
94239 94240 1.216707e+09 .. GET

/firefox?client=firefox-a&rls=org. m021lla en-U.
[4462 rows x 10 columns]
>>> df2[df2['http.request.method'].str.contains ('POST')]

frame.number frame.time_epoch ... http.request.method
http.request.uri
10216 10217 1.216692e+09 ... POST
/m57jean
10240 10241 1.216692e+09 ... POST
/m57 jean
90503 90504 1.216707e+09 ... POST
/notifyft
34262 94263 1.216707e+09 ... POST

[372 rows x 10 columns]

On notera la méthode not na permettant de s€lectionner les lignes contenant une requéte.

