
Qu’est-ce que Pandas ? 1

Pandas est une bibliothèque open-source pour Python qui fournit des structures de données haute
performance et des outils d’analyse de données.

Elle est particulièrement utile pour :

□ Manipulation de données :
⋄ importation de données structurées : par exemple au format CSV, «comma separated values»,

générées par tshark ou bien du json retourné par un webservice ;

⋄ nettoyage : éliminer les informations incomplètes ou inutiles ;

⋄ transformation : changer de type, interprétation de dates ;

⋄ préparation des données pour l’analyse : sélectionner par condition ;

□ Analyse de données :
⋄ statistiques descriptives : sur les valeurs numériques ou non ;

⋄ enrichissement : calculer de nouvelles informations et les ajouter ;

⋄ regroupement de données : regrouper les données par critères ;

□ Visualisation de données :
⋄ intégration avec les bibliothèques comme Matplotlib ou Seaborn pour créer des visualisations.

⋄ création de rapport au format json, html ou csv.

Accès aux ressources Web : le module requests 2

Ce module doit être installé :
xterm

$ pip install requests

Il est nécessaire de créer et/ou gérer un environnement virtuel avec le module venv

□ accès aux ressources par la méthode «classique» GET :
reponse = requests.get('https://p-fb.net')

□ éventuellement avec des paramètres dans l’URL :

reponse = requests.get('https://monsite.org',
params={'lang':'fr','contenu':'json'})

□ accès aux ressources par la méthode POST avec passage de paramètres :
reponse = requests('https://monsite.org', data = {'key' : 'value'})

□ accès avec des headers choisis, comme pour passer un token d’autorisation :

reponse = requests('https://monsite.org',
headers = {'Authorization' : 'Bearer ##TOKEN##'})

Gestion de la réponse

L’objet reponse :
⊳ reponse.status_code : le code de retour HTTP (200 Ok, 404 Not Found) ;
⊳ reponse.headers : les entêtes de la réponse ;
⊳ response.content : le contenu au format JSON, HTML ou binaire ;

En utilisant, reponse.json() on traite la réponse au format JSON.

Importation de données 3

⊳ au format CSV :
>>> df = pandas.read_csv('mes_donnees.csv')

⊳ au format XML : Il faudra installer le module «lxml» :
xterm

$ pip install lxml

Ce qui permet de lire le contenu d’un fichier au format XML :
>>> df = pandas.read_xml('fichier.xml')

⊳ convertir un dictionnaire :
>>> mon_dictionnaire = { 'col1' : [1, 2, 3], 'col2' : [4, 5, 6], 'col3' : [7, 8, 9] }
>>> df = pandas.DataFrame.from_dict(mon_dictionnaire)
>>> df

col1 col2 col3
0 1 4 7
1 2 5 8
2 3 6 9
>>>

Les lignes sont numérotées chacune en commençant à 0 (colonne de gauche).
⊳ convertir des données au format json :

>>> r = requests.get('http://ipinfo.io/')
>>> df = pandas.DataFrame(r.json(), index=[0])
>>> df

ip hostname city ... postal timezone readme
0 10.10.10.10 10-10-10-10.dsl.ovh.fr Paris ... 75000 Europe/Paris https://ipinfo.io/missin
gauth

[1 rows x 10 columns]

Il faut compléter les données avec un index[0].
L’utilisation de df = pandas.json_normalize(r.json()) réalise le même travail.

Sélectionner les colonnes 4

>>> df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'],
'Age' : [12, 18, 25, 25, 16] })

>>> df
Nom Age

0 Pierre 12
1 Paul 18
2 Jean 25
3 Alice 25
4 Bob 16

Afficher les premières ligne de la table pandas :
>>> df.head(10) # les 10 premières

Afficher les dernières ligne de la table pandas :
>>> df.tail(10) # les 10 dernières

>>> df.Nom
0 Pierre
1 Paul
2 Jean
3 Alice
4 Bob
Name: Nom, dtype: object

>>> df['Nom']
0 Pierre
1 Paul
2 Jean
3 Alice
4 Bob
Name: Nom, dtype: object

On peut accèder à une colonne en utilisant directement le nom de la colonne, ou alors on peut la passer
en chaine dans un accès à la manière d’un dictionnaire (obligatoire si le nom contient un espace).
>>> df[['Age', 'Nom']]

Age Nom
0 12 Pierre
1 18 Paul
2 25 Jean
3 25 Alice
4 16 Bob

On peut sélectionner plusieures colonnes en passant une liste.

Obtenir les données uniques d’une colonne : >>> df.Age.unique()
array([12, 18, 25, 16])

Sélectionner des lignes/colonnes et des tranches par index 5

Utilisation de la méthode iloc
>>> df.iloc[0]
Nom Pierre
Age 12
Name: 0, dtype: object

⊳ sélectionner un élément :
>>> df.iloc[0,0]
'Pierre'

⊳ sélectionner une tranche :
>>> df.iloc[2:4]

Nom Age
2 Jean 25
3 Alice 25

On remarque que l’on conserve les valeurs d’index originales.
⊳ sélectionner une «double tranche» ou un sous tableau :

>>> df.iloc[1:3, 1]
0 12
1 18
Name: Age, dtype: int64

⊳ modifier une valeur :
>>> df.iloc[0,0] = 'Arthur'
>>> df

Nom Age
0 Arthur 12
1 Paul 18
2 Jean 25
3 Alice 25
4 Bob 16

Création d’index 6

Créer un index à partir d’une colonne :
>>> df

Nom Age
0 Arthur 12
1 Paul 18
2 Jean 25
3 Alice 25
4 Bob 16
>>> df.set_index('Nom', inplace = True)

Age
Nom
Arthur 12
Paul 18
Jean 25
Alice 25
Bob 16
>>> p.loc['Jean']
Age 25
Name: Jean, dtype: int64

La méthode loc fonctionne maintenant sur cet
index.

Réinitialiser l’index sur les données extraites :
>>> df

Nom Age
0 Arthur 12
1 Paul 18
2 Jean 25
3 Alice 25
4 Bob 16
>>> df = df.iloc[2:4]
>>> df

Nom Age
2 Jean 25
3 Alice 25
>>> df.reset_index(inplace = True, drop=True)

Nom Age
0 Jean 25
1 Alice 25

Accès aux éléments en lecture/écriture 7

Accès en lecture
Accès a une valeur en mode [colonne][ligne] :
>>> df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'],

'Age' : [12, 18, 25, 24, 16] })
>>> df

Nom Age
0 Pierre 12
1 Paul 18
2 Jean 25
3 Alice 24
4 Bob 16
>>> df['Age'][2]
np.int64(25)

Accès avec la méthode loc en mode [ligne, colonne] :

>>> df.loc[2, 'Age']
np.int64(25)

Accès en écriture
On utilise l’opérateur loc :
>>> df.loc[2,'Age'] = 35
>>> df

Nom Age
0 Pierre 12
1 Paul 18
2 Jean 35
3 Alice 24
4 Bob 16

L’accès direct df['Age'][2] = 35 est déconseillé car plus lent.

Le plus simple ? ⟹ Utiliser tout le temps la méthode loc.

Conversion du format de données 8

Obtenir la liste des colonnes et leur type :
df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'],

'Age' : [12, 18, 25, 24, 16] })
>>> df.columns
Index(['Nom', 'Age'], dtype='object')
>>> df.dtypes
Nom object
Age int64
dtype: object

Conversion de format numérique :
>>> df['Age'] = df['Age'].astype(float)
>>> df

Nom Age
0 Pierre 12.0
1 Paul 18.0
2 Jean 35.0
3 Alice 24.0
4 Bob 16.0
>>> df.dtypes
Nom object
Age float64
dtype: object

Ici, on convertit les données d’entier vers flottant.
Conversion de date :
date = '22/Mar/2009:07:00:32 +0100'
temps = pandas.to_datetime(date, format='%d/%b/%Y:%H:%M:%S %z', utc = True)
>>> temps
Timestamp('2009-03-22 06:00:32+0000', tz='UTC')

Consulter les données incomplètes 9

Afficher les données où des informations sont manquantes :
>>> df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'], 'Age' : [12, 18,
25, 24, 16], 'Profession' : ['ingenieur', 'programmeur', 'programmeur', 'ingenieur', 'programmeur'
] })
>>> nouvelle_df = pandas.DataFrame.from_dict({ 'Nom' : ['Albert'], 'Age' : [33] })
>>> pandas.concat([df,ndf])

Nom Age Profession
0 Pierre 12 ingenieur
1 Paul 18 programmeur
2 Jean 25 programmeur
3 Alice 24 ingenieur
4 Bob 16 programmeur
0 Albert 33 NaN
>>> nouvelle_nouvelle_df = pandas.concat([df,ndf])
>>> nouvelle_nouvelle_df

Nom Age Profession
0 Pierre 12 ingenieur
1 Paul 18 programmeur
2 Jean 25 programmeur
3 Alice 24 ingenieur
4 Bob 16 programmeur
0 Albert 33 NaN
>>> nouvelle_nouvelle_df.isnull()

Nom Age Profession
0 False False False
1 False False False
2 False False False
3 False False False
4 False False False
0 False False True
>>> nouvelle_nouvelle_df.isnull().sum()
Nom 0
Age 0
Profession 1
dtype: int64

numpy.nan ⟹ valeur non numérique (Not A Number)

Tableau de booléens

Si on veut sélectionner les éléments avec une valeur définie : notnull() au lieu de isnull()

Ajout/Suppression de colonnes et de lignes 10

□ Ajouter une colonne vide :
>>> df = df.assign(nouvelle_colonne = None)

Le nom de la nouvelle colonne est exprimée sans être inclus dans une chaîne, et il faut mettre à jour la variable df
pour que la table soit modifiée.

□ Ajouter une ligne :

>>> nouvelle_ligne = pandas.DataFrame({ 'Colonne1' : [42], 'Colonne2' : [50] })
>>> pandas.concat([df, nouvelle_ligne], ignore_index = True)

Les colonnes non renseignées prendront la valeur NaN (numpy.nan, testable avec pandas.isna()).

□ Supprimer une colonne :
>>> df.drop('nom_colonne', axis=1, inplace=True)

Le paramètre inplace indique de modifier la table elle-même au lieu de retourner une copie.
>>> df.drop(df.columns[1], axis=1, inplace=True)

La colonne est désignée par son index.

□ Supprimer une ligne :
>>> df.drop(1, inplace = True)

Ici, c’est une ligne qui est supprimée par son indice.

□ Supprimer une ligne par une condition :
>>> df = df[df['Sauts'] > = 2]

Ici, on peut supprimer les lignes dont la valeur pour la colonne ’Saut’ est inférieure à 2.

□ Supprimer les lignes dont les données sont insuffisantes :
df.dropna(inplace = True)

Supprime les lignes pour lesquelles il y a une valeur None dans une de ses colonnes.

Création de nouvelles colonnes calculées 11

>>> df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'], 'Année embauche'
: [2018, 2019, 2016, 2020, 2017], 'Profession' : ['ingenieur', 'programmeur', 'programmeur', 'inge
nieur', 'programmeur'] })
>>> df

Nom Année embauche Profession
0 Pierre 2018 ingenieur
1 Paul 2019 programmeur
2 Jean 2016 programmeur
3 Alice 2020 ingenieur
4 Bob 2017 programmeur
>>> df['Ancienneté'] = 2024 - df['Année embauche']
>>> df

Nom Année embauche Profession Ancienneté
0 Pierre 2018 ingenieur 6
1 Paul 2019 programmeur 5
2 Jean 2016 programmeur 8
3 Alice 2020 ingenieur 4
4 Bob 2017 programmeur 7

>>> mon_dictionnaire = { 'col1' : [1, 2, 3], 'col2' : [4, 5, 6], 'col3' : [7, 8, 9] }
>>> df = pandas.DataFrame.from_dict(mon_dictionnaire)
>>> df

col1 col2 col3
0 1 4 7
1 2 5 8
2 3 6 9
>>> df['calcul'] = (df.col2 + df.col3)/ df.col1
>>> df

col1 col2 col3 calcul
0 1 4 7 11.0
1 2 5 8 6.5
2 3 6 9 5.0
>>> df['calcul'] = 0
>>> df

col1 col2 col3 calcul
0 1 4 7 0
1 2 5 8 0
2 3 6 9 0

écrasement des valeurs d’une colonne

Ajout avancés et sélection à l’aide d’une fonction 12

Utilisation d’une fonction pour créer le contenu d’une nouvelle colonne
def ma_fonction(x):

if x >= 18:
return True

return False
df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'],

'Age' : [12, 18, 25, 24, 16] })
df['Majeur'] = df['Age'].apply(ma_fonction)
print(df)

Avec la méthode apply, on applique la fonction sur chaque valeur de la colonne indiquée et on construit
une nouvelle colonne dont on a donné le nom lors de l’affectation.

xterm
Nom Age Majeur
0 Pierre 12 False
1 Paul 18 True
2 Jean 25 True
3 Alice 24 True
4 Bob 16 False

On peut alors filtrer les données sur cette nouvelle colonne :
>>> df[df['Majeur'] == True]

Nom Age Majeur
1 Paul 18 True
2 Jean 25 True
3 Alice 24 True
>>>

On peut ne pas utiliser de fonction dans le cas où la valeur est booléenne :
>>> selection = df['Age']>=18
>>> selection
0 False
1 True
2 True
3 True
4 False
Name: Age, dtype: bool

>>> df[selection]
Nom Age Majeur

1 Paul 18.0 True
2 Jean 45.0 True
3 Alice 24.0 True
>>>

On obtient le même résultat.

Sélection des éléments d’une table par contenu ou expression régulière 13

Avec la méthode .str.contains('...') et une simple chaîne :
>>> selection = df['Nom'].str.contains('P')
>>> selection
0 True
1 True
2 False
3 False
4 False
Name: Nom, dtype: bool
>>> df[selection]

Nom Profession
0 Pierre ingenieur
1 Paul programmeur

Ici, seul ’Pierre’ et ’Paul’ contiennent un ’P’.
Utilisation d’expression régulière :
Series.str.contains(pattern, case=True, flags=0, na=nan, regex=True)

⊳ pattern : séquence de caractères ou expressions régulières ;
⊳ case : si True, recherche sensible à la casse. Si False, recherche insensible à la casse ;
⊳ flags : Flags à passer directement au module re (par exemple : re.IGNORECASE).
⊳ na : la valeur à mettre en cas de données manquantes ;
⊳ regex : Si True, utilise pattern en expression régulière ou sinon comme une simple chaîne.
>>> selection = df['Nom'].str.contains(r'^.*i.*e$', regex=True)
>>> selection # contient un True pour les noms contenant un 'i' et finissant par un 'e'
0 True
1 False
2 False
3 True
4 False
Name: Nom, dtype: bool

Sélection par conditions 14

df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'],
'Age' : [12, 18, 25, 24, 16],

'Profession' : ['ingenieur', 'programmeur', 'programmeur', 'ingenieur', 'programmeur']})
>>> df

Nom Age Profession
0 Pierre 12 ingenieur
1 Paul 18 programmeur
2 Jean 25 programmeur
3 Alice 24 ingenieur
4 Bob 16 programmeur

Utilisation directe de la dataframe :
>>> df[(df.Age >= 18) & (df.Profession == 'programmeur')]

Nom Age Profession
1 Paul 18 programmeur
2 Jean 25 programmeur

Utilisation de la méthode query :
>>> df.query('(Age>=18) & (Profession == "programmeur")')

Nom Age Profession
1 Paul 18 programmeur
2 Jean 25 programmeur

Utilisation de la méthode loc :
>>> df.loc[(df.Age >= 18) & (df.Profession == 'programmeur')]

Nom Age Profession
1 Paul 18 programmeur
2 Jean 25 programmeur

Utilisation de la méthode iloc :
>>> df.iloc[2:4]

Nom Age Profession
2 Jean 25 programmeur
3 Alice 24 ingenieur

Remarques sur les erreurs les plus courantes 15

Incohérence de l’index

Lorsque vous sélectionnez des éléments d’une «DataFrame», vous obtenez une nouvelle «Data-
Frame»...
⟹ Mais, l’index est inconsistent, car il contient des «trous» pour chaque ligne de la table initiale non
sélectionnée !

Il est nécessaire de réinitialiser l’index :
xterm

>>> df_selection = df_selection.reset_index()

Utilisation de données incomplètes

Si une ligne d’une «DataFrame» ne possède pas de valeur pour une colonne, il peut être impossible
d’appliquer un traitement dessus...

Il est nécessaire de supprimer les lignes ne possédant pas de valeurs :
xterm

>>> df_sans_ligne_incomplete = df[df['colonne'].notnull()]

Les valeurs absentes peuvent être indiquées comme «NaN», «Not an Number», quand la colonne
contient des valeurs numériques.
⟹Il est aussi nécessaire de réinitialiser l’index avec «reset_index()»...

Statistiques numériques 16

On utilise la méthode describe qui ne traite que les données entières ou flottante :

>>> df
Nom Age Profession

0 Pierre 12 ingenieur
1 Paul 18 programmeur
2 Jean 25 programmeur
3 Alice 24 ingenieur
4 Bob 16 programmeur
>>> df3.describe()

Age
count 5.000000
mean 19.000000
std 5.477226
min 12.000000
25% 16.000000
50% 18.000000
75% 24.000000
max 25.000000

Pour traiter les données non numérique :

>>> df.describe(include='object')
Nom Profession

count 5 5
unique 5 2
top Pierre programmeur
freq 1 3

Statistiques 17

Compter le nombre d’occurences de chaque valeur unique avec value_counts

Sur une série :
import pandas

s = pandas.Series(['a', 'b', 'a', 'c', 'b', 'b'])
print(s.value_counts()) # Sortie: a 2, b 3, c 1

Pour une table :
>>> df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'], 'Profession' : [
'ingenieur', 'programmeur', 'programmeur', 'ingenieur', 'programmeur'] })
>>> df

Nom Profession
0 Pierre ingenieur
1 Paul programmeur
2 Jean programmeur
3 Alice ingenieur
4 Bob programmeur
>>> df['Profession'].value_counts()
Profession
programmeur 3
ingenieur 2
Name: count, dtype: int64
>>>

Ou :
>>> df.value_counts(subset = 'Profession')
Profession
programmeur 3
ingenieur 2
Name: count, dtype: int64

Ici, on utilise subset pour sélectionner la colonne (on peut aussi donner une liste de colonnes
['colonne1', 'colonne2'] ce qui donne un comptage des différentes combinaisons uniques
des valeurs de ces colonnes).

Regrouper les données et trier 18

Utilisation de la méthode groupby :
>>> df = pandas.DataFrame({ 'Nom' : ['Pierre', 'Paul', 'Jean', 'Alice', 'Bob'], 'Age' : [12, 18,
25, 24, 16], 'Profession' : ['ingenieur', 'programmeur', 'programmeur', 'ingenieur', 'programmeur'
] })
>>> df.groupby('Profession')['Age'].mean()
Profession
ingenieur 18.000000
programmeur 19.666667
Name: Age, dtype: float64

On calcule l’âge moyen des différentes professions.

Utilisation des méthodes groupby et count :
>>> df.groupby('Profession')['Profession'].count()
Profession
ingenieur 2
programmeur 3
Name: Profession, dtype: int64

Pour compter le nombre d’individus de chaque
profession.

Pour trier suivant le contenu d’une colonne :
>>> df.sort_values('Age')

Nom Age Profession
0 Pierre 12 ingenieur
4 Bob 16 programmeur
1 Paul 18 programmeur
3 Alice 24 ingenieur
2 Jean 25 programmeur
>>> ndf = df.sort_values('Age', ascending=False)
>>> ndf

Nom Age Profession
2 Jean 25 programmeur
3 Alice 24 ingenieur
1 Paul 18 programmeur
4 Bob 16 programmeur
0 Pierre 12 ingenieur

On peut ensuite prendre les premières valeurs :
>>> ndf.iloc[0:2]

Nom Age Profession
2 Jean 25 programmeur
3 Alice 24 ingenieur

Attention
Rénitialiser l’index du résultat :
ndf.reset_index()

Parcourir tous les éléments d’une table 19

Avec iloc

for ligne in range(len(df)):
for colonne in range(len(df.columns)):

print(df.iloc[ligne,colonne], " ", end = '')
print()

xterm
Pierre 12 ingenieur
Paul 18 programmeur
Jean 25 programmeur
Alice 24 ingenieur
Bob 16 programmeur

Avec itertuples

for ligne in df.itertuples():
print(ligne.Index, ":", ligne.Nom, ligne.Age)

xterm
0 : Pierre 12
1 : Paul 18
2 : Jean 25
3 : Alice 24
4 : Bob 16

Une variante :
for ligne in df.itertuples():

print(ligne[0], ":", ligne[1], ligne[2])

xterm
0 : Pierre 12
1 : Paul 18
2 : Jean 25
3 : Alice 24
4 : Bob 16

Avec iterrows

for index,ligne in df.iterrows():
print(index, ":", ligne["Nom"], ligne["Age"])

xterm
0 : Pierre 12
1 : Paul 18
2 : Jean 25
3 : Alice 24
4 : Bob 16

Exportation des tables 20

⊳ au format csv :
>>> df.to_csv('mon_fichier.csv')

Crée un fichier.

⊳ au format json :
>>> df.to_json()

Retourne un chaîne de caractères.

⊳ au format html :
>>> df.to_html()

Retourne une chaîne de caractères.
Un serveur Web qui appelle la fonction travail_pandas sur http://localhost:8000/ :
from http.server import BaseHTTPRequestHandler, HTTPServer

class RequestHandler(BaseHTTPRequestHandler):
def do_GET(self):

self.send_response(200)
self.end_headers()
self.wfile.write(travail_pandas().encode('utf8'))

def run_server():
server_address = ('', 8000)
httpd = HTTPServer(server_address, RequestHandler)
print("Server running at http://localhost:8000")
httpd.serve_forever()

def travail_pandas():
Travail sur la table pandas
return df.to_html()

run_server()

Interfaçage avec Scapy 21

On récupére une liste de paquets depuis un fichier au format pcap :

#!/usr/bin/env python3

from scapy.all import *
import pandas

Extraction des donnees pertinentes des paquets
def traiter_paquet(packet):

on retourne un dictionnaire
if packet.haslayer('IP'):

return {
'src_ip': packet['IP'].src,
'dst_ip': packet['IP'].dst,

}

les_paquets = rdpcap("paquets_captures.pcap")

Extraction des infos sur tous les paquets IP
donnees = [{ 'IP' : p[IP].src } for p in les_paquets if IP in p]

Creer une table
df = pandas.DataFrame(donnees)
print(df)

On veut obtenir la liste des adresses IP source de ces paquets et la tranformer en une table pandas :
Pour chaque paquet, il faut :
⊳ extraire l’adresse IP source du paquet s’il contient un datagramme IP ;
⊳ créer un dictionnaire pour associer un «label» associé à l’adresse IP source
⊳ ajouter ce dictionnaire à une liste ;

⟹ On peut utiliser une «list comprehension» pour faire ce travail.
⊳ donner cette liste à pandas.DataFrame pour créer la table : le label sera utilisé pour associer les éléments entre eux et

nommer la colonne obtenue.

Lecture d’un fichier et extraction 22

Contenu du fichier à analyser dans pandas. 192.168.10.23 : Paul
192.168.17.87 : Pierre
192.168.47.98 : Jacques
192.168.34.11 : Alice
192.168.28.21 : Bob

#!/usr/bin/env python3

import pandas
import sys
import re

nom_fichier = 'liste_machines.txt'
re_analyse = re.compile(r'^([.\d]+)\s*:\s*(.*)')

def traiter_ligne(l):
resultat = re_analyse.search(l)
if resultat:

return { 'IP' : resultat.group(1), 'Utilisateur' : resultat.group(2) }
try:

desc = open(nom_fichier, 'r');
except Exception as e:

printf(e.args)
sys.exit(1)

liste_infos = []
while 1:

ligne = desc.readline()
if not ligne:

break
ajout = traiter_ligne(ligne)
if ajout:

liste_infos.append(traiter_ligne(ligne))
df = pandas.DataFrame(liste_infos)
print(df)

En utilisation interactive 23

On désire analyser un fichier pcap contenant plus de 90 000 paquets et déterminer les adresses IP
source uniques :
>>> lp = rdpcap('nitroba.pcap')
>>> liste_adresses_ip_source = [p[IP].src for p in lp if IP in p]
>>> import pandas
>>> df = pandas.DataFrame({'IP' : liste_adresses_ip_source})
>>> df

IP
0 192.168.1.64
1 74.125.19.83
2 192.168.1.64
3 74.125.19.19
4 74.125.19.19
... ...
90374 192.168.15.1
90375 192.168.15.1
90376 192.168.15.1
90377 192.168.15.1
90378 192.168.15.4

[90379 rows x 1 columns]
>>> len(df.IP.unique())
432

Il faut :
⊳ récupérer la liste de ces adresses IP source ;

⊳ créer un dictionnaire avec cette liste (le nom de la colonne sera IP ;

⊳ créer la table pandas en passant ce dictionnaire à pandas.DataFrame et compter les adresses
uniques.

Pour aller plus loin 24

La méthode to_frame permet de créer une colonne et de l’ajouter à la table :
>>> k = df.groupby('Ik=df.groupby('IP')['IP'].count().to_frame('c')
>>> k

c
IP
10.0.1.5 8
116.252.234.84 1
12.129.147.65 45
12.129.210.41 4
12.129.210.46 10
... ..
90.26.122.118 1
91.121.109.197 48
91.65.135.197 1
93.103.36.196 1
98.220.46.34 1

[432 rows x 1 columns]
>>> k.sort_values('c',ascending=False)

c
IP
192.168.15.4 34554
192.168.1.64 6818
208.111.148.6 3731
69.22.167.215 3635
74.125.15.159 3033
... ...
125.198.166.16 1
125.211.216.53 1
125.211.198.10 1
125.215.223.210 1
79.131.4.159 1

[432 rows x 1 columns]

On peut ainsi appliquer un tri pour connaitre

quelles sont les adresses les plus présentes.

la méthode to_frame

avec le nom de la nouvelle colonne

⟹ La colonne count est ajoutée à la table.

Pour regrouper des colonnes dans une même table 25

On a : ⊳ récupérer les adresses sources des différents datagramme IP et construit la table df ;
⊳ récupérer les adresses destinations et construit la table df2 ;
⊳ on peut regrouper les deux colonnes dans une seule table :

>>> liste_adresses = [{ 'IP src' : p[IP].src} for p in lp if IP in p]
>>> liste_adresses_2 = [{ 'IP dst' : p[IP].dst} for p in lp if IP in p]
>>> df = pandas.DataFrame(liste_adresses)
>>> df2 = pandas.DataFrame(liste_adresses_2)
>>> df['IP dst'] = df2['IP dst']
>>> df

IP src IP dst
0 192.168.1.64 74.125.19.83
1 74.125.19.83 192.168.1.64
2 192.168.1.64 74.125.19.19
3 74.125.19.19 192.168.1.64
4 74.125.19.19 192.168.1.64
...
90374 192.168.15.1 239.255.255.250
90375 192.168.15.1 239.255.255.250
90376 192.168.15.1 239.255.255.250
90377 192.168.15.1 239.255.255.250
90378 192.168.15.4 74.125.19.99

Attention : il faut être sûr que les index des deux tables

font correspondre les bonnes données entre elles !

On peut aussi utiliser un join avec : >>> df.join(df2)

Il est plus sûr de faire l’extraction directement depuis les paquets :
>>> liste_adresses = [{ 'IP src' : p[IP].src, 'IP dst' : p[IP].dst } for p in lp if IP in p]
>>> df = pandas.DataFrame(liste_adresses)
>>> df

IP src IP dst
0 192.168.1.64 74.125.19.83
1 74.125.19.83 192.168.1.64
2 192.168.1.64 74.125.19.19
3 74.125.19.19 192.168.1.64
4 74.125.19.19 192.168.1.64
...
90374 192.168.15.1 239.255.255.250
90375 192.168.15.1 239.255.255.250
90376 192.168.15.1 239.255.255.250
90377 192.168.15.1 239.255.255.250
90378 192.168.15.4 74.125.19.99
[90379 rows x 2 columns]

Pour afficher des coordonnées (Lattitude,Longitude) 26

import geopandas
import pandas
import matplotlib.pyplot

world_file_path = 'ne_110m_admin_0_countries.shp'
gdf_world = geopandas.read_file(world_file_path)

df = pandas.DataFrame(
{

"Latitude": [48.8534, 45.5088],
"Longitude": [2.3488, -73.5878],

}
)

gdf_coordonnees = geopandas.GeoDataFrame(
df, geometry=geopandas.points_from_xy(df.Longitude, df.Latitude)

)

fig, ax = matplotlib.pyplot.subplots(figsize=(20,10))
ax.set_xticks([])
ax.set_yticks([])
gdf_world.plot(ax = ax, aspect = 'auto', color = "lightgray", cmap = "Pastel2", edgecolor = "black",
alpha = 0.5)
gdf_coordonnees.plot(ax = ax, color = "red")

matplotlib.pyplot.title("Basic Map of World with GeoPandas")
matplotlib.pyplot.show()

Pour télécharger la carte du monde :
https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/110m

/cultural/ne_110m_admin_0_countries.zip

Utilisation de tshark 27

On peut créer un fichier au format csv avec tshark :
xterm

tshark -r mon_fichier.pcap -T fields -e frame.number -e frame.time_epoch -e eth.src -e eth.dst -e
eth.type -e ip.src -e ip.dst -e ip.proto -E header=y -E separator=, -E quote=d > sortie.csv

xterm
>>> import pandas
>>> df = pandas.read_csv('output.csv')
>>> df

frame.number frame.time_epoch eth.src eth.dst eth.type
ip.src ip.dst ip.proto
0 1 1.216691e+09 00:1d:d9:2e:4f:61 00:1d:6b:99:98:68 0x0800
192.168.1.64 74.125.19.83 6.0
...
94409 94410 1.216707e+09 00:17:f2:e2:c0:ce 00:1d:d9:2e:4f:60 0x0800
192.168.15.4 74.125.19.99 6.0

[94410 rows x 8 columns]
Conversion des dates au format epoch vers un format "humain"
>>> df['frame.time_epoch'] = pandas.to_datetime(df['frame.time_epoch'], unit = 's')
>>> df.iloc[0]
frame.number 1
frame.time_epoch 2008-07-22 01:51:07.095278025
eth.src 00:1d:d9:2e:4f:61
eth.dst 00:1d:6b:99:98:68
eth.type 0x0800
ip.src 192.168.1.64
ip.dst 74.125.19.83
ip.proto 6.0
Name: 0, dtype: object
>>> df['eth.type'].unique()
array(['0x0800', '0x0806', nan], dtype=object)
>>> df[df['eth.type'].isna()]

frame.number frame.time_epoch eth.src eth.dst eth.type
ip.src ip.dst ip.proto
18792 18793 2008-07-22 04:29:43.273530006 00:14:d1:44:a0:f1 ff:ff:ff:ff:ff:ff NaN
NaN NaN NaN

Utilisation de tshark 28

On peut utiliser tshark pour récupérer le contenu des requêtes http :
xterm

>>> import pandas
>>> df = pandas.read_csv('output.csv')
>>> df2 = df[df['http.request.method'].notna()]
>>> df2[df2['http.request.method'].str.contains('GET')]

frame.number frame.time_epoch ... http.request.method
http.request.uri
2 3 1.216691e+09 ... GET
/mail/?logout&hl=en
171 172 1.216691e+09 ... GET
/a/hBIhP7YAbeh5-B7SEoEBNJqOT.AcGxgqbm/spacer.gif
...
94227 94228 1.216707e+09 ... GET
/firefox?client=firefox-a&rls=org.mozilla:en-U...
94239 94240 1.216707e+09 ... GET
/firefox?client=firefox-a&rls=org.mozilla:en-U...
[4462 rows x 10 columns]
>>> df2[df2['http.request.method'].str.contains('POST')]

frame.number frame.time_epoch ... http.request.method
http.request.uri
10216 10217 1.216692e+09 ... POST
/m57jean
10240 10241 1.216692e+09 ... POST
/m57jean
...
90503 90504 1.216707e+09 ... POST
/notifyft
94262 94263 1.216707e+09 ... POST
/
[372 rows x 10 columns]

On notera la méthode notna permettant de sélectionner les lignes contenant une requête.

