Master 167 année
Faculté Université Parallélisme

des Sciences

& Techniques ” ‘ : ‘ de Limoges &App[icatz'ons

Examen — décembre 2024

Durée : 1h30 — Documents autorisés

1- Parallélisation de I’algorithme du « Shortest Path Tree » de Dijkstra :
L4pts —| d’apreés Wikipedia I

Au départ, on considére que les distances de chaque nceud au neeud de départ sont infinies, sauf pour
le neeud de départ pour lequel la distance est nulle.

Au départ, I’ensemble des nceuds sélectionnés est vide.

Au cours de chaque itération, on choisit un nceud sélectionné de distance minimale parmi les nceuds
non encore sélectionnés, et on 1’ajoute aux nceuds sélectionnés.

Ensuite, on met a jour la distance de chaque nceud voisin du nceud sélectionné : 1a nouvelle distance
du neeud voisin est le minimum entre la distance existante et la distance calculée en faisant la somme
de:

> ladistance entre le nceud de départ et le noeud sélectionné (contenue dans la table des distances)
> la distance du neeud sélectionné a ce neeud voisin (contenue dans la matrice d’adjacence).

Le graphe exprimé en matrice d’adjacence :

ll#define MAX_INT 32768

2

3|#define N 6

4|l#define TRUE 1

5|#define FALSE O

6

7|int graphe[N] [N] = {

8 { 0, 40, 15, 0, 0, 0 1},

9 {40, 0, 20, 10, 25, 6 },
10 {15, 20, 0, 100, 0, 01},
11 { 0, 10, 100, 0, 0, 0 1},
12 { 0, 25, 0, 0, 0, 8},
13 {0, 6, 0, 0, 8, 01},
14]};

Les prototypes des fonctions a écrire/utiliser :

1|// Une fonction qui retourne 1l'indice du noeud avec la distance minimale

2|// depuis l'ensemble des noeuds non déja inclus dans le Shortest Path Tree

3|lint distanceMin (int distance[], int ensembleSPT[]) {

4 int min = MAX_INT, index_min;

5.

6

7|// La fonction qui implémente 1l'algorithme du Shortest Path de Dijkstra

8|// depuis un noeud de depart pour un graphe représenté par une table d'adjacence

9|void dijkstra(int graphe[N][N], int depart) {
10 int distance[N]; // Le tableau de sortie qui contiendra la distance la plus
11 // courte depuis le noeud de depart vers i
12
13 int ensembleSPT[N]; // ensembleSPT[i] est vrai si le noeud est inclus dans le
14 // shortest path tree
15]...

Questions :
a. Exécuter I’algorithme & la main sur le graphe et donnez le tableau distance résultat. (2pts)
En combien d’étapes 1’algorithme arrive au résultat ?

b. Ecrivez le code de la fonction distanceMin utilisant le code fourni. (2pts)
Pourquoi a-t-on besoin de MAX_INT ?

c. Ecrivez le code de la fonction Di jkst ra en version séquentielle utilisant le code fourni. (3pts)

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, « Parallélisme & Applications—Examen — décembre 2024 » version du 19 décembre 2024, rédigé avec ConTgXt — Don’Uine !

2-
6pts

d. On considere toujours la construction du « Shortest Path Tree » pour un seul nceud de départ.
Quelles sont les sources potentielles de parallelisation exploitables avec OpenMP dans cet algorithme ?
Quelle type de parallélisme allez vous exploiter ?

Pour les différentes threads OpenMP, quelles sont les données de 1’agorithme :

o privées;

o partagées;

Est-ce qu’il y a des risques/problémes pour 1’acces a ces données ?

Est-ce que les «tasks » sont intéressantes ou non ?

Vous expliquerez pourquoi.

Décrivez la parallélisation de la fonction Di jkstra que vous allez appliquer.
Donnez le code utilisant OpenMP correspondant a votre proposition de parallélisation.

e. Est-ce que votre solution est a coiit optimal ?

Pour un algorithme, on veut mettre en place une structure d’anneau sur un « cluster MPI ».

Chaque nceud du cluster, disposera d’au plus 2 voisins: Exemple sur un cluster de 4 nceuds définissant un
anneau de 4 :

voisin_ouest -4 N; = voisin_est

|| - <
| 2 > 3 |

On considérera que le nombre de nceuds de I’anneau est choisi par I’ utilisateur au lancement du programme.

Questions :
a. Donnez le code réalisant le traitement suivant :
> intégrer le nceud dans I’anneau ;
> définir par rapport au rang d’un nceud, le rang dans 1I’anneau de chacun de ses voisins s’il existe.

b. Donnez le code pour envoyer sucessivement par chaque nceud, une valeur entiere contenue dans la
variable coefficient présente sur chaque nceud a chacun de ses voisins, s’il existe, d’abord vers
voisin_est, puis vers voisin_ouest.

c. Lors de la réception de la valeur coefficient par un nceud depuis chacun de ses voisins :

o est-ce que I’envoi et la réception vont étre synchronisés ?

o est-ce que le nceud va recevoir les valeurs de chacun de ses voisins dans un ordre prédéfini ?
Pourquoi ?

o est-ce que le nceud peut savoir de quel neeud il recoit chaque valeur ?
Est-ce que cela peut introduire des retards dans le traitement de chaque réception ?
Comment remédier a ces problemes ?
Vous donnerez les instructions a utiliser pour la réception des différents voisins.

d. Alafin de ’agorithme, un des nceuds de ’anneau est chargé de récupérer depuis chacun des nceuds de
I’anneau, une valeur finale, stockée dans la variable flottante résultat présente sur chaque nceud.

Quelle opération MPI allez vous utiliser pour réaliser cette réception depuis chaque nceud de I’anneau,
sachant que c’est le premier nceud de 1’anneau qui sera chargé de récupérer toutes ces valeurs.

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, « Parallélisme & Applications—Examen — décembre 2024 » version du 19 décembre 2024, rédigé avec ConTgXt — Don’%&lc !

(6pts)

(Ipt)

(Ipt)

(2pts)

(2pts)

(Ipt)

