Master 167 année

Faculté Université

des Sciences

Corrections TP n°2

Programmation avec FreeRTOs

s mmbm Utilisation des «files de messages »
a. Vous implémenterez sur votre ESP32c3 la correction de I’exercice 2 de la fiche de TD 2:

#define TAILLE_MESSAGE 32

static const uint8_t msg_queue_len = 5;
static QueueHandle_t msg_queue;

void printMessages (void *parameters) {
char buffer_message[32];

while (1) {
xQueueReceive (msg_queue, (void *)buffer_message, portMAX DELAY) ;
Serial.println (buffer_message) ;
}
}

void sendMessage (void *paramaters) {
int nb_messages = 0;
char buffer_tache[32];

while (1) {
sprintf (buffer_tache, "[Depuis 1 message %d]", ++nb_messages) ;
xQueueSend (msg_queue, (void *)buffer_tache, portMAX DELAY) ;
vTaskDelay (1000 / portTICK_PERIOD_MS) ;
}
}

void sendMessage2 (void *paramaters) {
int nb_messages = 0;
char buffer_tache[32];

while (1) {
sprintf (buffer_tache, "[Depuis 2 message %d]", ++nb_messages);
xQueueSend (msg_queue, (void *)buffer_tache, portMAX DELAY) ;
vTaskDelay (500 / portTICK_PERIOD_MS) ;
}
}

void setup() {

// Configure Serial
Serial.begin(115200) ;

// Wait a moment to start (so we don't miss Serial output)
vTaskDelay (1000 / portTICK_PERIOD_MS) ;

Serial.println();

Serial.println("---FreeRTOS Queue Demo—---");

// Create queue
msg_queue = xQueueCreate (msg_queue_len, TAILLE_MESSAGE*sizeof (char)) ;

// Start print task

xTaskCreate (sendMessage, "Send Message", 2048, NULL, 1, NULL);

xTaskCreate (sendMessage2, "Send Message", 2048, NULL, 1, NULL);

xTaskCreate (printMessages, "Print Messages", 1024, NULL, 1, NULL);
}

void loop () {

}

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic ! 1/13

b. Est-ce qu’il peut y avoir des problémes pour les buffer gérés par chaque tache ?

1l peut y avoir des problémes de place pour le contenu du message, si la taille de message dépasse la
taille allouée plus le caractére zéro '\ 0 ' indiquant la fin de la chaine.

1l peut y avoir également des blocages si la file de messages est pleine, c-da-d si la tache chargée de lire
les messages de la file ne le fait pas assez vite ou si elle est suspendue ou de priorité inférieure a la
priorité des tdches qui écrivent.

1l ne peut, en revanche, y avoir de probléme de corruption de la file de message du fait que sa manipu-
lation est réalisée par le RTOS.

Rajoutez la possibilité d’identifier la provenance du message.

#define TAILLE_MESSAGE 32

static const uint8_t msg_queue_len = 5;
static QueueHandle_t msg_queue;

typedef struct {

char contenu[TAILLE_MESSAGE];
int provenance = 0;

} Message;

void printMessages (void *parameters) {
Message un_message;

while (1) {
xQueueReceive (msg_queue, (void *)&un_message, portMAX_ DELAY) ;
Serial.printf ("%$s depuis %d\n",un_message.contenu, un_message.provenance) ;

}
}

void sendMessage (void *paramaters) {

int nb_messages = 0;

Message message_a_envoyer;

message_a_envoyer.provenance = 1;

while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages);
xQueueSend (msg_queue, (void *)é&message_a_envoyer, portMAX_DELAY) ;

vTaskDelay (1000 / portTICK_PERIOD_MS) ;
}
}

void sendMessage?2 (void *paramaters) {

int nb_messages = 0;

Message message_a_envoyer;

message_a_envoyer.provenance = 2;

while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages);
xQueueSend (msg_queue, (void *)é&message_a_envoyer, portMAX_DELAY) ;

vTaskDelay (500 / portTICK_PERIOD_MS) ;
}
}

void setup () {

// Configure Serial
Serial.begin(115200) ;

// Wait a moment to start (so we don't miss Serial output)
vTaskDelay (1000 / portTICK_PERIOD_MS) ;
Serial.println();

// Create queue
msg_gueue = xQueueCreate (msg_gueue_len, sizeof (Message)) ;

// Start print task

xTaskCreate (sendMessage, "Send Message", 2048, NULL, 1, NULL);

xTaskCreate (sendMessage2, "Send Message 2", 2048, NULL, 1, NULL);

xTaskCreate (printMessages, "Print Messages", 2048, NULL, 1, NULL);
}

void loop () {
}
Vous noterez que la taille de la pile allouée a la tdche chargée de recevoir les messages et de les afficher

est doublée pour éviter des débordements de pile entrainant le redémarrage du SoC.

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic ! 2/ 1 3

d. On veut rajouter un indicateur lumineux sur I"’ESP32¢3 :
o rouge quand la file de message est vide ;
o verte quand la tiche « sendMessage » envoi un message ;
o bleue qaund la tache « sendMessage2 » envoi un message.

Proposez deux versions différentes utilisant des outils différents proposés par FreeRTOs pour mettre
en ceuvre cette modification.

En premiere solution, on peut faire en sorte que ce soit lors de I’envoi du message que la couleur de la
LED est changée.

=>la LED est une ressource critique dont I’accés est partagé entre deux tdches, il faut un mutex pour
en protéger ’acces.

#include "Freenove_WS2812_Lib_for ESP32.h"
#define LEDS_COUNT 1

#define LEDS_PIN 8

#define CHANNEL 0

#define RED 255, 0, O

#define GREEN 0, 255, 0

#define BLUE 0, 0, 255

#define TAILLE_MESSAGE 32

Freenove_ESP32_WS2812 strip = Freenove_ESP32_WS2812 (LEDS_COUNT, LEDS_PIN, CHANNEa;

TYPE_GRB) ;
static SemaphoreHandle_t mutex; // Mutex pour l'acces a la LED
static const uint8_t msg_queue_len = 5;

static QueueHandle_t msg_queue;

typedef struct {

char contenu[TAILLE_MESSAGE];
int provenance = 0;

} Message;

void printMessages (void *parameters) {
Message un_message;

while (1) {
xQueueReceive (msg_queue, (void *)&un_message, portMAX DELAY) ;
Serial.printf ("%s depuis %d\n\n",un_message.contenu, un_message.provenance);
xSemaphoreTake (mutex, portMAX_DELAY) ;
strip.setLedColorData (0, RED);
strip.show () ;
vTaskDelay (100/portTICK_PERIOD_MS) ;
xSemaphoreGive (mutex) ;
}
}

void sendMessage (void *paramaters) {

int nb_messages = 0;
Message message_a_envoyer;
message_a_envoyer.provenance = 1;
while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages) ;

xSemaphoreTake (mutex, portMAX_DELAY) ;

xQueueSend (msg_queue, (void *)&message_a_envoyer, portMAX DELAY) ;
strip.setLedColorData (0, GREEN) ;

strip.show () ;

vTaskDelay (200 / portTICK_PERIOD_MS) ;
strip.setLedColorData(0,0,0,0);

strip.show () ;

vTaskDelay (100 / portTICK_PERIOD_MS) ;

xSemaphoreGive (mutex) ;

vTaskDelay (4000 / portTICK_PERIOD_MS) ;

}

void sendMessage?2 (void *paramaters) {
int nb_messages = 0;

Message message_a_envoyer;
message_a_envoyer.provenance = 2;

vTaskDelay (2000 / portTICK_PERIOD_MS) ;
while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages) ;

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic ! 3/ 1 3

xSemaphoreTake (mutex, portMAX_DELAY) ;

xQueueSend (msg_queue, (void *)é&message_a_envoyer, portMAX_DELAY) ;
strip.setLedColorData (0, BLUE) ;

strip.show () ;

vTaskDelay (200 / portTICK_PERIOD_MS) ;
strip.setLedColorData(0,0,0,0);

strip.show () ;

vTaskDelay (100 / portTICK_PERIOD_MS) ;

xSemaphoreGive (mutex) ;

vTaskDelay (8000 / portTICK_PERIOD_MS) ;

}

void setup() {

// Configure Serial

Serial.begin(115200) ;

mutex = xSemaphoreCreateMutex () ;

strip.begin();

strip.setBrightness (10) ;

// Wait a moment to start (so we don't miss Serial output)
vTaskDelay (1000 / portTICK_PERIOD_MS) ;

Serial.printf ("Demo\n") ;

Serial.flush{();

// Create queue

msg_qgqueue = xQueueCreate (msg_qgqueue_len, sizeof (Message)) ;

// Start print task

xTaskCreate (printMessages, "Print Messages", 4096, NULL, 1, NULL);
xTaskCreate (sendMessage, "Send Message", 2048, NULL, 1, NULL);
xTaskCreate (sendMessage2, "Send Message 2", 2048, NULL, 1, NULL);
// Terminate Setup & loop task

vTaskDelete (NULL) ;

}
void loop () |

}

Les 3 taches entrent en compétition pour ’accés a la LED : un mutex protége cet acces.
11 est nécessaire d’introduire un délai pour que la bibliothéque et le hardware de la LED fonctionne
correctement.

Le port série est aussi une ressource critique, mais seule la tdche printMessages () y accéde.
On peut également gérer la LED lors de la réception :

#include "Freenove_WS2812_Lib_for_ESP32.h"

#define LEDS_COUNT 1
#define LEDS_PIN 8
#define CHANNEL 0

#define RED 255, 0, 0
#define GREEN 0, 255, 0
#define BLUE 0, 0, 255

#define TAILLE_MESSAGE 32

Freenove_ESP32_WS2812 strip = Freenove_ESP32_WS2812 (LEDS_COUNT, LEDS_PIN, CHANNEL,
TYPE_GRB) ; <J

static const uint8_t msg_queue_len = 5;
static QueueHandle_t msg_gqueue;

typedef struct {

char contenu[TAILLE_MESSAGE];
int provenance = 0;

} Message;

void printMessages (void *parameters) {
Message un_message;
bool pas_de_message = true;

while (1) {
if (xQueueReceive (msg_queue, (void *)&un_message, 0) == pdTRUE)
{
Serial.printf ("%$s depuis %d\n\n",un_message.contenu, un_message.provenance) ;
pas_de_message = false;

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic ! 4/ 1 3

if (un_message.provenance == 1) {
strip.setLedColorData (0, GREEN) ;
strip.show () ;

}

else

{
strip.setLedColorData (0, BLUE) ;

strip.show () ;
}
vTaskDelay (500 / portTICK_PERIOD_MS) ;
strip.setlLedColorData(0,0,0,0);
strip.show () ;

}

else

{
if (!pas_de_message) {
strip.setlLedColorData (0, RED);
strip.show () ;
pas_de_message = true;
}

}

vTaskDelay (500/portTICK_PERIOD_MS) ;

}
}

void sendMessage (void *paramaters) {

int nb_messages = 0;
Message message_a_envoyer;
message_a_envoyer.provenance = 1;
while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages) ;

xQueueSend (msg_queue, (void *)&message_a_envoyer, portMAX DELAY) ;
vTaskDelay (4000 / portTICK_PERIOD_MS) ;

}

void sendMessage2 (void *paramaters) {
int nb_messages = 0;

Message message_a_envoyer;
message_a_envoyer.provenance = 2;

vTaskDelay (2000 / portTICK_PERIOD_MS) ;
while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages) ;
xQueueSend (msg_queue, (void *)&message_a_envoyer, portMAX_DELAY) ;
vTaskDelay (8000 / portTICK_PERIOD_MS) ;
}
}

void setup () {

// Configure Serial

Serial.begin(115200) ;

strip.begin();

strip.setBrightness (10) ;

// Wait a moment to start (so we don't miss Serial output)
vTaskDelay (1000 / portTICK_PERIOD_MS) ;

Serial.printf ("Demo\n") ;

Serial.flush{();

// Create queue

msg_qgueue = xQueueCreate (msg_qgqueue_len, sizeof (Message));

// Start print task

xTaskCreate (printMessages, "Print Messages", 4096, NULL, 1, NULL);
xTaskCreate (sendMessage, "Send Message", 2048, NULL, 1, NULL);
xTaskCreate (sendMessage2, "Send Message 2", 2048, NULL, 1, NULL);
// Terminate Setup & loop task

vTaskDelete (NULL) ;

}

void loop () {

}
Ici, il n’y a que la tdche printMessages () qui accéde a la LED et au port série, alors il n’y a pas

besoin de mutex.

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic ! 5/ 1 3

e. Est-ce que les couleurs sont discernables pour un humain ?
Quelle pourrait étre une alternative ?
Si les échanges de messages sont trop rapides, les couleurs se superposent a cause de la persistence de
Vision.
On peut améliorer la reconnaissance des couleurs en introduisant des délais, mais cela ralentit inuti-
lement le programme.
= Utiliser des LEDs pour indiquer un état du SoC pour faire du «log » n’est pas une bonne solution.
Par contre, si le but est d’informer ['utilisateur, il faut prévoir des délais pour les échanges et pour les
signaux lumineux : allumage suivi d’extinction.
On peut également utiliser des couleurs dont le mélange est discernable et compréhensible par I’ utili-
sateur : par exemple du mauve pour du bleu et du rouge simultanément.
Par contre, il faut bien choisir les niveaux de couleurs RGB pour avoir un bon rendu et éventuellement,
mettre un diffuseur sur la LED pour améliorer le rendu du mélange.

f. Rajoutez ’affichage d’un message spécial li¢ a 1’appui du bouton.
La couleur associée au bouton est blanc.

#include "Freenove_WS2812_Lib_for_ ESP32.h"
#define BUTTONPIN 9

#define LEDS_COUNT 1
#define LEDS_PIN 8
#define CHANNEL 0

#define RED 255, 0, 0
#define GREEN 0, 255, 0
#define BLUE 0, 0, 255
#define WHITE 255, 255, 255

#define TAILLE_MESSAGE 32
TYPE_GRB) ;

static SemaphoreHandle_t mutex;
static SemaphoreHandle_t bouton;

Freenove_ESP32_WS2812 strip = Freenove_ESP32_WS2812 (LEDS_COUNT, LEDS_PIN, CHANNEaL

static const uint8_t msg_queue_len = 5;
static QueueHandle_t msg_queue;

typedef struct {

char contenu[TAILLE_MESSAGE];
int provenance = 0;

} Message;

void ARDUINO_ISR_ATTR isr (void* arg) {
BaseType_t xHigherPriorityTaskWoken;

// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWoken = pdTRUE;

xSemaphoreGiveFromISR (bouton, &xHigherPriorityTaskWoken) ;

}

void bouton_led(void *parameters)
{
while (1)
{
xSemaphoreTake (bouton, portMAX_DELAY) ;
//xSemaphoreTake (mutex, portMAX_DELAY) ;
Serial.printf ("Bouton !\n\n");
strip.setLedColorData (0, WHITE) ;
strip.show () ;
vTaskDelay (100/portTICK_PERIOD_MS) ;
//xSemaphoreGive (mutex) ;
}
}
void printMessages (void *parameters) {
Message un_message;

while (1) {

xQueueReceive (msg_queue, (void *)&un_message, portMAX_ DELAY) ;
xSemaphoreTake (mutex, portMAX_DELAY) ;

Serial.printf ("%s depuis %d\n\n", un_message.contenu, un_message.provenance) ;
strip.setLedColorData (0, RED) ;

strip.show () ;

vTaskDelay (100/portTICK_PERIOD_MS) ;

xSemaphoreGive (mutex) ;

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic ! 6/ 1 3

}

void sendMessage (void *paramaters) {

int nb_messages = 0;

Message message_a_envoyer;

message_a_envoyer.provenance = 1;

while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages) ;
xSemaphoreTake (mutex, portMAX_DELAY) ;
xQueueSend (msg_queue, (void *)&message_a_envoyer, portMAX_DELAY) ;

strip.setLedColorData (0, GREEN) ;
strip.show () ;

vTaskDelay (200 / portTICK_PERIOD_MS) ;
strip.setLedColorData (0,0,0,0);
strip.show () ;

vTaskDelay (100 / portTICK_PERIOD_MS) ;
xSemaphoreGive (mutex) ;

vTaskDelay (4000 / portTICK_PERIOD_MS) ;

}

void sendMessage2 (void *paramaters) {
int nb_messages = 0;

Message message_a_envoyer;
message_a_envoyer.provenance = 2;

vTaskDelay (2000 / portTICK_PERIOD_MS) ;

while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages) ;
xSemaphoreTake (mutex, portMAX_DELAY) ;
xQueueSend (msg_queue, (void *)é&message_a_envoyer, portMAX_DELAY) ;

strip.setLedColorData (0, BLUE) ;
strip.show () ;

vTaskDelay (200 / portTICK_PERIOD_MS) ;
strip.setLedColorData(0,0,0,0);
strip.show () ;

vTaskDelay (100 / portTICK_PERIOD_MS) ;
xSemaphoreGive (mutex) ;

vTaskDelay (8000 / portTICK_PERIOD_MS) ;

}

void setup() {

// Configure Serial
Serial.begin(115200) ;

mutex = xSemaphoreCreateMutex() ;
bouton = xSemaphoreCreateBinary () ;

strip.begin() ;

strip.setBrightness (10) ;

pinMode (BUTTONPIN, INPUT_PULLUP) ;
attachInterruptArg(digitalPinToInterrupt (BUTTONPIN), isr, NULL, RISING) ;
// Wait a moment to start (so we don't miss Serial output)

vTaskDelay (1000 / portTICK_PERIOD_MS) ;

Serial.printf ("Demo\n") ;

Serial.flush();

// Create queue

msg_qgqueue = xQueueCreate (msg_qgqueue_len, sizeof (Message));

// Start print task

xTaskCreate (printMessages, "Print Messages", 4096, NULL, 1, NULL);
xTaskCreate (sendMessage, "Send Message", 2048, NULL, 1, NULL);
xTaskCreate (sendMessage2, "Send Message 2", 2048, NULL, 1, NULL);
xTaskCreate (bouton_led, "Bouton", 2048, NULL, 2, NULL);

// Terminate Setup & loop task

vTaskDelete (NULL) ;

}

void loop () {

}

Ici, on a besoin d’une tdche supplémentaire bouton_led () pour gérer le bouton.

On va donner une priorité supérieure a cette tdche : elle ne pourra pas étre interrompue par les autres

tdches = il n’est pas nécessaire de lui faire utiliser le mutex d’accés a la LED et au port série.

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic !

L’interruption du bouton va déclencher cette tdache : il faut qu’elle libére une Sémaphore qui doit étre
créer obligatoirement par xSemaphoreCreateBinary () pour que cela fonctionne.

Et pour la version alternative :

#include "Freenove_WS2812_Lib_for_ESP32.h"
#define BUTTONPIN 9

#define LEDS_COUNT 1
#define LEDS_PIN 8
#define CHANNEL 0

#define RED 255, 0, 0
#define GREEN 0, 255, 0
#define BLUE 0, 0, 255
#define WHITE 255, 255, 255

#define TAILLE_MESSAGE 32

Freenove_ESP32_WS2812 strip = Freenove_ESP32_WS2812 (LEDS_COUNT, LEDS_PIN, CHANNEL,
TYPE_GRB) ; <J

static const uint8_t msg_queue_len = 5;
static QueueHandle_t msg_queue;

typedef struct {

char contenu[TAILLE_MESSAGE];
int provenance = 0;

} Message;

void ARDUINO_ISR_ATTR isr (void* arg) {
BaseType_t xHigherPriorityTaskWoken;
// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWoken = pdFALSE;
static Message m;
m.provenance = 3;
sprintf (m.contenu, "bouton !");
xQueueSendFromISR (msg_queue, (void *)é&m, &xHigherPriorityTaskWoken) ;

}

void printMessages (void *parameters) {
Message un_message;
bool pas_de_message = true;

while (1) {
if (xQueueReceive (msg_qgqueue, (void *)&un_message, 0) == pdTRUE)
{
Serial.printf ("%s depuis %d\n\n", un_message.contenu, un_message.provenance) ;
pas_de_message = false;
int source = un_message.provenance;
switch (un_message.provenance)
{
case 1:
strip.setLedColorData (0, GREEN) ;
strip.show () ;
break;
case 2:
strip.setLedColorData (0, BLUE) ;
strip.show () ;
break;
case 3:
strip.setLedColorData (0, WHITE) ;
strip.show () ;
}
vTaskDelay (500 / portTICK_PERIOD_MS) ;
strip.setLedColorData(0,0,0,0);
strip.show () ;
}
else
{
if (!pas_de_message) {
strip.setLedColorData (0, RED);
strip.show () ;
pas_de_message = true;
}
}
vTaskDelay (500/port TICK_PERIOD_MS) ;
}

}

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic ! 8/ 1 3

void sendMessage (void *paramaters) {

int nb_messages = 0;
Message message_a_envoyer;
message_a_envoyer.provenance = 1;
while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages);

xQueueSend (msg_queue, (void *)é&message_a_envoyer, portMAX_DELAY) ;
vTaskDelay (4000 / portTICK_PERIOD_MS) ;

}
}

void sendMessage?2 (void *paramaters) {
int nb_messages = 0;

Message message_a_envoyer;
message_a_envoyer.provenance = 2;

vTaskDelay (2000 / portTICK_PERIOD_MS) ;

while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages) ;
xQueueSend (msg_queue, (void *)&message_a_envoyer, portMAX DELAY) ;
vTaskDelay (8000 / portTICK_PERIOD_MS) ;

}

void setup () {

// Configure Serial

Serial.begin(115200) ;

strip.begin() ;

strip.setBrightness (10) ;

pinMode (BUTTONPIN, INPUT_PULLUP) ;
attachInterruptArg(digitalPinToInterrupt (BUTTONPIN), isr, NULL, RISING) ;
// Wait a moment to start (so we don't miss Serial output)

vTaskDelay (1000 / portTICK_PERIOD_MS) ;

Serial.printf ("Demo\n") ;

Serial.flush{();

// Create queue

msg_qgqueue = xQueueCreate (msg_gueue_len, sizeof (Message)) ;

// Start print task

xTaskCreate (printMessages, "Print Messages", 4096, NULL, 1, NULL);
xTaskCreate (sendMessage, "Send Message", 2048, NULL, 1, NULL);
xTaskCreate (sendMessage2, "Send Message 2", 2048, NULL, 1, NULL);
// Terminate Setup & loop task

vTaskDelete (NULL) ;

}

void loop () {

}

Dans cette version, l'interruption lié au bouton envoi un message avec une nouvelle provenance ce qui
permet sa gestion facile dans la tdche printMessages (), il n’y a donc pas besoin de mutex ni de

nouvelle tdche.

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic !

9/13

g. On veut maintenant que le bouton réinitialise les compteurs associés aux deux tiches.
Donnez une solution correcte a ce probléme.

#include "Freenove_WS2812_Lib_for_ESP32.h"
#define BUTTONPIN 9

#define LEDS_COUNT 1
#define LEDS_PIN 8
#define CHANNEL 0

#define RED 255, 0, O
#define GREEN 0, 255, 0
#define BLUE 0, 0, 255
#define WHITE 255, 255, 255

#define TAILLE_MESSAGE 32

Freenove_ESP32_WS2812 strip = Freenove_ESP32_WS2812 (LEDS_COUNT, LEDS_PIN, CHANNEL,
TYPE_GRB) ; <J

static SemaphoreHandle_t mutex;
static SemaphoreHandle_t bouton;
static const uint8_t msg_queue_len = 5;

static QueueHandle_t msg_queue;

int nb_messages_taskl = 0;
int nb_messages_task2 0;

typedef struct {

char contenu[TAILLE_MESSAGE];
int provenance = 0;

} Message;

void ARDUINO_ISR_ATTR isr (void* arg) {
BaseType_t xHigherPriorityTaskWoken;

// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWoken = pdTRUE;

xSemaphoreGiveFromISR (bouton, &xHigherPriorityTaskWoken) ;

}

void bouton_led(void *parameters)
{
while (1)
{
xSemaphoreTake (bouton, portMAX_DELAY) ;
//xSemaphoreTake (mutex, portMAX_DELAY) ;
nb_messages_taskl = 0;
nb_messages_task2 = 0;
Serial.printf ("Bouton !\n\n");
strip.setLedColorData (0, WHITE) ;
strip.show () ;
vTaskDelay (100/portTICK_PERIOD_MS) ;
//xSemaphoreGive (mutex) ;
}
}
void printMessages (void *parameters) {
Message un_message;

while (1) {

xQueueReceive (msg_qgqueue, (void *)&un_message, portMAX_ DELAY) ;
xSemaphoreTake (mutex, portMAX_DELAY) ;

Serial.printf ("%$s depuis %d\n\n",un_message.contenu, un_message.provenance) ;
strip.setLedColorData (0, RED);

strip.show () ;

vTaskDelay (100/portTICK_PERIOD_MS) ;

xSemaphoreGive (mutex) ;

}

}

void sendMessage (void *paramaters) {
nb_messages_taskl = 0;

Message message_a_envoyer;
message_a_envoyer.provenance = 1;

while (1) {
xSemaphoreTake (mutex, portMAX_ DELAY) ;
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages_taskl);
xQueueSend (msg_queue, (void *)&message_a_envoyer, portMAX DELAY) ;
strip.setLedColorData (0, GREEN) ;
strip.show () ;

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic ! 10/ 1 3

vTaskDelay (200 / portTICK_PERIOD_MS) ;
strip.setLedColorData(0,0,0,0);
strip.show () ;

vTaskDelay (100 / portTICK_PERIOD_MS) ;
xSemaphoreGive (mutex) ;

vTaskDelay (4000 / portTICK_PERIOD_MS) ;

}

void sendMessage2 (void *paramaters) {
nb_messages_task2 = 0;

Message message_a_envoyer;
message_a_envoyer.provenance = 2;

vTaskDelay (2000 / portTICK_PERIOD_MS) ;

while (1) {
xSemaphoreTake (mutex, portMAX_DELAY) ;
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages_task2);
xQueueSend (msg_queue, (void *)&message_a_envoyer, portMAX DELAY) ;

strip.setLedColorData (0, BLUE) ;
strip.show () ;

vTaskDelay (200 / portTICK_PERIOD_MS) ;
strip.setLedColorData(0,0,0,0);
strip.show () ;

vTaskDelay (100 / portTICK_PERIOD_MS) ;
xSemaphoreGive (mutex) ;

vTaskDelay (8000 / portTICK_PERIOD_MS) ;

}

void setup () {

// Configure Serial
Serial.begin(115200) ;

mutex = xSemaphoreCreateMutex() ;
bouton = xSemaphoreCreateBinary () ;

strip.begin() ;

strip.setBrightness (10) ;

pinMode (BUTTONPIN, INPUT_PULLUP) ;
attachInterruptArg(digitalPinToInterrupt (BUTTONPIN), isr, NULL, RISING) ;
// Wait a moment to start (so we don't miss Serial output)

vTaskDelay (1000 / portTICK_PERIOD_MS) ;

Serial.printf ("Demo\n") ;

Serial.flush{();

// Create queue

msg_qgqueue = xQueueCreate (msg_gqueue_len, sizeof (Message)) ;

// Start print task

xTaskCreate (printMessages, "Print Messages", 4096, NULL, 1, NULL);
xTaskCreate (sendMessage, "Send Message", 2048, NULL, 1, NULL);
xTaskCreate (sendMessage2, "Send Message 2", 2048, NULL, 1, NULL);
xTaskCreate (bouton_led, "Bouton", 2048, NULL, 2, NULL);

// Terminate Setup & loop task

vTaskDelete (NULL) ;

}

void loop () {

}
1l faut externaliser les compteurs des deux tdaches sendMessage () et sendMessage?2 ().

Pour en protéger I’acces, on peut inclure leur modification dans la section critique associée au mutex
de protection d’accés a la LED.

Néanmoins, en donnant une priorité supérieure d la tdche bouton_1led () qui est déclenchée par
Uinterruption liée au bouton, on a pas besoin de protection par mutex pour la réinitialisation des
compteurs : la tdche bouton_1led () n’est pas interruptible par une autre tdche qui voudrait avoir
accés aux compteurs.

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic ! 1 1/ 1 3

Et pour la version alternative :

#include "Freenove_WS2812_Lib_for ESP32.h"
#define BUTTONPIN 9

#define LEDS_COUNT 1

#define LEDS_PIN 8

#define CHANNEL 0

#define RED 255, 0, O

#define GREEN 0, 255, 0

#define BLUE 0, 0, 255

#define WHITE 255, 255, 255

#define TAILLE_MESSAGE 32

Freenove_ESP32_WS2812 strip = Freenove_ESP32_WS2812 (LEDS_COUNT, LEDS_PIN, CHANNEL,
TYPE_GRB) ; <J

static const uint8_t msg_queue_len = 5;
static QueueHandle_t msg_queue;

int nb_messages_taskl = 0;
int nb_messages_task2 0;

typedef struct {

char contenu[TAILLE_MESSAGE];
int provenance = 0;

} Message;

void ARDUINO_ISR_ATTR isr (void* arg) {
BaseType_t xHigherPriorityTaskWoken;
// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWoken = pdFALSE;
static Message m;

m.provenance = 3;
sprintf (m.contenu, "bouton !");
nb_messages_taskl = 0;

nb_messages_task?2 0;

xQueueSendFromISR (msg_queue, (void *)é&m, &xHigherPriorityTaskWoken) ;
}
void printMessages (void *parameters) {

Message un_message;

bool pas_de_message = true;

while (1) {

if (xQueueReceive (msg_qgqueue, (void *)&un_message, 0) == pdTIRUE)

{
//xQueueReceive (msg_queue, (void *)s&un_message, portMAX_DELAY) ;
Serial.printf ("%$s depuis %d\n\n", un_message.contenu, un_message.provenance) ;
pas_de_message = false;
int source = un_message.provenance;

switch (un_message.provenance)
{
case 1:
strip.setLedColorData (0, GREEN) ;
strip.show () ;
break;
case 2:
strip.setLedColorData (0, BLUE) ;
strip.show () ;
break;
case 3:
strip.setLedColorData (0, WHITE) ;
strip.show () ;
}
vTaskDelay (500 / portTICK_PERIOD_MS) ;
strip.setLedColorData(0,0,0,0);
strip.show () ;
}
else
{
if (!pas_de_message) {
strip.setLedColorData (0, RED) ;
strip.show () ;
pas_de_message = true;
}
}

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic ! 12/ 1 3

vTaskDelay (500/portTICK_PERIOD_MS) ;

}

void sendMessage (void *paramaters) {

nb_messages_taskl = 0;

Message message_a_envoyer;

message_a_envoyer.provenance = 1;

while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages_taskl);
xQueueSend (msg_queue, (void *)é&message_a_envoyer, portMAX_DELAY) ;

vTaskDelay (4000 / portTICK_PERIOD_MS) ;
}
}

void sendMessage2 (void *paramaters) {
nb_messages_task2 = 0;
Message message_a_envoyer;
message_a_envoyer.provenance = 2;

vTaskDelay (2000 / portTICK_PERIOD_MS) ;

while (1) {
sprintf (message_a_envoyer.contenu, "[message %d]", ++nb_messages_task2);
xQueueSend (msg_queue, (void *)&message_a_envoyer, portMAX DELAY) ;
vTaskDelay (8000 / portTICK_PERIOD_MS) ;

}

void setup() {

// Configure Serial

Serial.begin(115200) ;

strip.begin() ;

strip.setBrightness (10) ;

pinMode (BUTTONPIN, INPUT_PULLUP) ;
attachInterruptArg(digitalPinToInterrupt (BUTTONPIN), isr, NULL, RISING) ;
// Wait a moment to start (so we don't miss Serial output)

vTaskDelay (1000 / portTICK_PERIOD_MS) ;

Serial.printf ("Demo\n") ;

Serial.flush();

// Create queue

msg_qgueue = xQueueCreate (msg_gueue_len, sizeof (Message)) ;

// Start print task

xTaskCreate (printMessages, "Print Messages", 4096, NULL, 1, NULL);
xTaskCreate (sendMessage, "Send Message", 2048, NULL, 1, NULL);
xTaskCreate (sendMessage2, "Send Message 2", 2048, NULL, 1, NULL);
// Terminate Setup & loop task

vTaskDelete (NULL) ;

}

void loop () {

}

Dans cette version, on externalise les compteurs également.
Le travail de réinitialisation est trés court : il est inclus dans le travail de interruption et il n’y a pas
besoin de mutex pour la protection, car la priorité de l'interruption est la plus haute et ne peut donc
pas étre interrompue par une des tiches sendMessage et sendMessage?Z ().

h. Observez si tout fonctionne bien lors de 1’appui répété et rapide du bouton.
Avez vous bien géré la réinitialisation des compteurs ?
Oui, comme expliqué précédemment pour les deux versions proposées.

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Systémes Embarqués—Corrections TP n°2 » version du 11 décembre 2025, rédigé avec ConTgXt — Don’t Panic ! 13/ 1 3

