Rappels Programmation ARM
Utilisation OpenOCD/GDB

Architecture du processeur ARM : composants logiques et chemins des données

Incrementer bus ———
Incrementer

| |
| |
I B bus i Data out
|
|) l
I 1
| y \ 1
| |
: Registers Multiplier Shifter :
| |
| |
| ‘ |
: v Abus \
I I
I I
|
: [y \ |
| |
| |
: ALU :
| |
: : Data in
I ALU bus B]
I |
| |
| |
| Program counter bus |
| |
| |
| |
| y \ |
| |
! _ | Address 1 Address bus |
: register :
| |
| |
| |
| y 1
| |
| |
| 1
| 1

Memory
and
1/0 devices

deux registres peuvent servir de source
pour une instruction en passant par les bus
AetB;

les données sur le bus B passent par un
«shifter» : on peut décaler la seconde opé-
rande avant qu’elle atteigne 'ALU ;

les bus A et B peuvent fournir des opérandes
pour le «multiplier» et le «multiplier» peut
fournir des données pour les bs A et B;

les données en lecture depuis la mémoire
ou des I/Os peuvent aller directement dans
'ALU puis dans un registre.

les données en écriture vers la mémoire ou
dans les 1/Os sont prises directement dans
le bus B, qui peuvent provenir de regsitres,
mais ces données ne peuvent étre modi-
fiées sur le chemin.

O le registre d’adresse est un registre temporaire utilisé a chaque opération de lecture/écriture mémoire/l/Os.

Peut étre chargé: ¢ depuis le «program counter» pour chercher, «fetch», la prochaine instruction;
¢ depuis I'ALU pour permettre des modes d’adressages ou un registre est utilisé comme adresse de

base et un décalage est calculé a la volée.

Aprés I'acces, I'adresse de base peut étre incrémentée et cette valeur stockée dans un registre ;
= utilisé pour incrémenter le «program counter» a chaque instruction ;
= utilisé pour certains mode d’adressage ol un pointeur est incrémenté a chaque accés mémoire.

Larchitecture ARM : les registres du processeur

Le processeur dispose de 16 registres

O

RO 2 R12: 13 registres a usage générique utilisable comme @ Ces registres sont utilisés dans le cas des appels de
on le veut; fonction :
Le «link register» contient 'adresse de retour aprés exé-
o cution de la fonction.
R14: le registre de lien, «link» ; Le «stack register» contient 'adresse du sommet de la
pile, ot on empilera les valeurs courantes des registres,
et pour créer les variables locales de la fonction appeléee.

R13: le registre de pile, «stack» ;

R15: le «program counter» ou registre ordinal.

le CPSR, «Current Program Status Register» : registre d’état contient des bits d’information sur la derniére instruction
utilisée. Utilisé notamment pour les conditions et branchements.

Exécution des instructions

Effet Pipeline Chaque instruction est exécutée en trois cycles d’horloge:
> un cycle pour le chargement de I'instruction depuis la mémoire : premier
étage du pipeline;

> un cycle pour décoder I'instruction: second étage du pipeline;
> un cycle pour I’exécution : troisieme étage du pipeline;

Lorsqu’une instruction quitte le premier étage du pipeline, une nouvelle instruction
peut y entrer:

= une instruction sort a chaque cycle du pipeline

= une séquence d’instruction est exécutée en un cycle chacune!

Processeur ARM : le pipeline d’exécution

1fetch ——> 2decode —> 3 execute En ARMV7 le pipeline a 3 étapes:
O fetch: charge une instruction depuis la mémoire ;

ADD E@ O decode: identifie I'instruction a exécuter et établit les
chemins passant par les bus d’échanges;

O execute : exécute l'instruction et écrit le résultat dans
STR SUB ADD un registre.

Pipeline et «program counter»

OX8000%DR pc?[pc, #0] La notation assembleur LDR pc, [pc, #0] se traduit par:
0x8004 NOP > charge dans PC, «program counter» @
0x8008 NOP > le contenu de PC, «program counter», + 0 ©.
0x800C DCD JumpAddress . .
=>ce qui permet un adressage par décalage.

Mais que vaut PC ?
=>cela dépend du pipeline d’instruction:
1 2 3

NOP NOP LDR

Le PC évolue de la maniere suivante:

1. étape 1 du pipeline: PC = 0x8000 pour l'instruction LDR;
2. étape 2 du pipeline: PC 0x8004 pour l'instruction NOP ;
3. étape 3 du pipeline: PC = 0x8008 pour l'instruction NOP ;

=>losrque l'instruction LDR est exécutée dans I'étape 3 du pipeline, PC vaut 0x8008!

Larchitecture ARM ; le format des instructions

31-28 27-25 24-21 20 19-16 15-12 11-0
Condition|Operand type|OpCode|Set Condition |Operand register|Destination Immediate
Codes register Operand

O Condition: autorise I'exécution de l'instruction suivant les bits dans le registre CPSR;

O Operand type :spécifie le format de 'opérande des bist 19-0:
¢ par exemple deux registres suivis d’'une opérande immédiate ;

O Opcode: quelle instruction on veut réaliser comme Add ou MUL;

O Set condition code: un seul bit indiquant si I'instruction doit mettre a jour le registre CPSR, valeur

0, ou non, valeur 1;

O Operand register: un registre a utiliser comme entrée;;

O Destination register: un registre a utiliser comme sortie;

O Immediate operand : une donnée de petite taille que I'on peut donner directement dans I'instruction.
¢ exemple: si on veut ajouter 1 & un registre, on peut mettre la donnée a 1 ce qui évite de mettre

1 dans un autre registre et de faire la somme de ces deux registres.

Architecture ARM : le processeur

Architecture 32 bits et 64 bits

O En 32bits:
les adresses mémoires sont sur 32 bits;
¢ les registres du processeur sont sur 32 bits ;

<

O En 64bits:
les adresses mémoires sont sur 64 bits;
les registres du processeur sont sur 64 bits;

<
<

O En 32bits comme en 64bits, les instructions sont sur 32bits :
o Comment peut-on charger une variable depuis la mémoire dasn un regsitre donné avec une instruction sur 32bits ?

<&
<
<o

*

* % ok o F

I'instruction fait 32bits ;

4bits sont utilisés pour un opcode;;

4bits pour une instruction conditionnelle ;

3bits sont utilisés pour indiquer le type de l'opérande ;
1bit pour indiquer si 'opération affecte le CPSR;
4bits sont nécessaires pour indiquer le registre ;

=il reste 16bits pour indiquer I’adresse mémoire !

=il reste 12bits pour indiquer I’adresse mémoire si on a besoin d’indiquer 2 registres!

O Comment faire ?

on peut utiliser un registre pour indiquer I'adresse mémoire : accés mémoire indirect

Mais comment charger I'adresse mémoire initialement dans le registre en une seule instruction ?

charger dans deux registres séparés 'adresse désirée, puis décaler et combiner les deux registres en un seul
registre =4 instructions pour arriver au résultat ce qui est excessif !

Et alors ? On peut utiliser le PC, «Program Counter» pour charger une mémoire pas trop éloignée, a 12bits de
décalage par rapport au PC, soient 4096 octets accessibles et beaucoup plus par décalage de ces bits.

Utilisation des registres

Définition de contenu

Tabel: .byte 74, 0112, O0b00101010, Ox4A, O0x4a, 'J', 'H' + 2
.word Ox1234ABCD, -1434
.ascii "Hello World\n"

Charger un registre

Linstruction LDR peut servir a charger une addresse dans le registe ou la donnée pointée par cette addresse.
Il est également possible d’indexer la mémoire en utilisant la valeur d’un registre comme valeur d’index.
> addressage relatif au PC, «Program Counter» ;
> charger depuis la mémoire;
> indexer a travers la mémoire.
Adressage relatif au PC
Si les données ne sont pas loin de l'instruction utilisant leur adresse, on peut utiliser cet adressage :

[LDR R1, =helloworld

ce qui donne aprés assemblage :

[LDR R1, [pc, #20]

Ici, la valeur du décalage est de 0x20 en hexa, soit 32.

Ce décalage est: LDR{type} Rt, =label

> déterminé lors de I'assemblage ; Type|Meaning

> sur 12 bits dans l'instruction elle-méme: B Unsigned byte

¢ ce quidonne de 0 a 4095;

¢ un bit est utilisé dans l'instruction pour indiquer dans quel sens:: SB_|signed byte

=>le décalage peut étre de +4095 words au maximum. H |Unsigned halfword (16 bits)

¢ le décalage peut étre par multiple de 1 a 2 octets, comme indiqué SH |signed halfword (16 bits)

dans la table = — |omitted for word

Assembleur ARM : appel de fonction

Utilisation de la pile

Deux opérations possibles:
> push: ajouter un élément;
> pop: enlever et retourner I'élément le plus récemment ajouté.

Gestion dans le processeur ARM:
O registre R13 aussi appelé SP, «Stack Pointer» : il pointe sur 'emplacement de la pile en mémoire ;
O deux instructions du jeu d’instruction ARM32 : LDM, «Load Multiple» et STM, «Store Multiple» ;
O ces instructions sont adaptables :
¢ choix du sens d’augmentation de la pile par incrémentation ou décrémentation des adresses ;
¢ le registre pointe soit sur la fin de la pile, soit sur le prochain emplacement libre ;
= le systéme est adaptable aux besoins de différents systéemes d’exploitation.
O lassembleur GNU offre des pseudo-instructions qui s’appuient sur les instructions LDM et STM:
¢ PUSH liste de registre: PUSH {R0O, R5-R12};
¢ PORP liste de registres: POP {R0-R4, R6, R9-R12};

980 Push R5 980

984 R5 = 1022 984

988 988

992 992

996 996 1022 SP=996
1000 SP=1000 1000

Assembleur ARM : appel de fonction

Branchement avec lien de retour

Apres I'appel de la fonction, il faut retourner a I'exécution des instructions qui suivent:
le registre R14, «link register» : sert a stocker I'adresse de retour ;

O

O

O

l'instruction BL, «Branch with Link» : réalise un branchement aprés avoir stocke I'adresse de la pro-

chaine instruction dans LR;

l'instruction BX : réalise le retour de fonction en sautant a 'adresse présente dans le registre LR;

BL saute a I'adresse de @ et sauvegarde I'adresse
de retour dans LR ;
BX saute a I'adresse stockée dans LR ©

-Q

@ ... other code ...
- - BL myfunc
MOV R1, #4 ¢ e e @)= = — = — — — -
@ ... more code ... '9 :
_____________________________ "
-3 myfunc: @ do some work :
BX LR _ o ____ 1

Et comment cela se passe si la fonction appelle une autre fonction ?

On utilise de nouveau dans la fonction my func, l'instruction BL: e other code
T BL myfunc
= BL copie I'adresse de la prochaine instruction dans le registre LR MOV R1, #4
@ ... more code

=>ce qui écrase 'ancienne valeur contenue dans LR

=la fonction my func ne pourra plus retourner!

=il faut:

> sauvegarder la valeur du registre LR dans la pile® avant le BL,
> restaurer la valeur du regsitre LRO® avant de retourner avec BX

myfunc: PUSH {LR}©
@ do some work ...
BL myfunc?2
@ do some more work...
POP {LR}O
BX LR
myfunc2:
BX LR

@ do some work

Différents modes d’exécution

O 1 mode utilisateur,«usr», non privilégié ;

O 5 modes pour des exceptions + 1 pour le systéme, priviégiés:

Mode Sigle|Description
User usr |mode normal d’exécution non privilégié
Interrupt _irq |activé lors d’'une exception causée par une interruption matérielle

Fast Interrupt

_fiq

activé lors d’une exception causée par une interruption matérielle a gérer rapidement

Abort _abt |activé lors d’'une exception d’acces a la mémoire

Undefined |_und|activé lorsqu’une instruction indéfinie est exécuté (une valeur sur 32bits qui ne
correspond a aucune instruction existante)

Supervisor |_svc |Software Interrupt: activé lors du reset ou lors d’'un appel systeme

System sys |mode privilégié pour le travail de I'0OS.

O le passage d'un mode a l'autre peut étre fait manuellement en modifiant des bits du registre CPSR;

O les modes privilégiés sont activés pour traiter des interruptions ou des exceptions ;

O le mode systéme, «sys», est un mode spécial pour accéder a des ressources protégées (comme la MMU
par exemple si disponible) ;

O les modes traitant les interruptions disposent de registres dupliqués, remplagant les registres qu'ils du-
pliquent durant I'exécution du traitement, ce qui évitent les collisions et corruptions.

O les modes «usr» et «sys» partagent le méme ensemble de registres.

Registres et mode d’exécution : 37 registres au total pour 7 modes d’'opérations

Registres dupliqués:

0 > accélére le changement de contexte : pas besoin de les sau-
1 vegarder/restaurer.
r2 > chaque mode dispose d’'un SP différent : des piles différentes
r3 pour chaque mode.
r4 Registres SPSR,«Saved Program Status Register» :
5 > utilisés lors d’un changement de mode;
| = copie locale du CPSR,«Current Program Status Register»,

7 a restaurer en fin de traitement dans le mode spécial.
r8 r8_fiq
ro r9_fiq Le mode firq disposent de registres r8 ar12:
r10 r10_fiq pas de sauvegarde/restauration

Frame pointer ri1 r11_fiq = plus rapide.
ri2 r12_fiq

Stack pointer r13 r13_fiq r13 _svc r13_abt r13_irq ri13 und

Link register r14 r14_fiq r14_svc ri4_abt ri4_irq ri4_und
Program Counter r15 h

mode Usr/Sys P dee Fast IRO]

] CPSR | SPSR_fiq |SPSR_svc | SPSR_abt | SPSR_irq | SPSR_und

~~

registres dupliqués

Mais ca marche comment les interruptions ?

Interruptions : gestion matérielle et logicielle

Assigner les interruptions

C’est le designer du SoC qui décide quel matériel peut produire quelle interruption : il s’agit d’interconnecter des circuits
avec le processeur.

> SWI, «SoftWare Interrupt» ou svc, utilisée pour accéder a des fonctions privilégiées de 'OS;;
> IRQ, assignées a des interruptions génériques comme des timers périodiques;;
> FIQ, réservée pour une seule source qui nécessite un faible temps de réponse.

Les latences dans le traitement d’une interruption

La latence est I'intervalle de temps entre:
> linstant ol le signal externe change d’état;;
> la premiére instruction du traitement est chargé dans le processeur (fetch);

Le systeme essaie d’atteindre deux buts:
O gérer plusieurs interruptions simultanément;;
O minimiser la latence.

Deux métodes pour I'atteindre :

> autoriser la gestion imbriquée, «nested», des interruptions;

> donner des priorités aux différentes sources d’interruption.
Activer/désactiver les interruptions

Les instructions dédiées: Activer une IRQ / FIRQ: MRS rl, cpsr
MRS|lire le CPSR e
MSR|stocker dans le CPSR Désactiver une IRQ/FIRQ: [MRS r1, cpsr
BIC leffacer un bit ORR rl, rl, #0x80 / 0x40
MSR cpsr_c, rl
ORR|opération OR

Interruptions : gestion de la pile du handler d’interruption

Pourquoi une pile ?

La pile est nécessaire pour le changement de context:

> empiler les valeurs des registres pour les sauvegarder;

> dépiler les valeurs pour restaurer les registres ;

D> variables locales nécessaires pour la gestion des interruptions.
Il faut choisir:

O lataille de la pile;

O sa position dans la mémoire.

v Y
User stack Interrupt Stack
User stack
Heap
4 t
Code Hefap
' Code
Interrupt Stack

Vector Table

Vector Table

Dans ce cas 13, la

fable des vecteurs d’interruption
ne peut étre écraséee lors d’'un dépassement de pile.

Table des vecteurs d’interruption

La table des vecteurs d’interruption est une table d’adresses:

> le processeur ARM saute a I'adresse associée a I'exception qui s’est déclenchée;

D> a cette adresse se trouve une instruction de saut vers le code de traitement de cette exception.

Dans le tableau, on trouve une instruction de bran-
chement:

[1dr pc, [pc, # IRQ_HANDLER_OFFSET]

------ ;
Ou #_TIRQ HANDLER_OFFSET est le décalagei
pour atteindre le code de gestion de I'interruption.

b7

Adresse Exception Mode en entrée

0x00000000 |Reset Superviseur

0x00000004 |Undefined Undefined
instruction

0x00000008 |Software Supervisor
interrupt

0x0000000C|Abort (prefetch) |Abort

0x00000010 |Abort (data) Abort

0x00000014 |Reserved Reserved

10x00000018 |IRQ IRQ

0x0000001C|FIRQ FIRQ

Cette table doit étre remplie par I'OS lors du démarrage de la machine.

Exceptions : priorités et gestion de I'adresse de retour

Priorités

[indique si le handler de l'interruption peut étre ou non interrompu]

z

[de’finie quelle exception est la plus importante parmi celles de'c/enche’esj

N ’

Exception *\|Priorité|bit I|bit F
Reset 1 1 |1
Data Abort 2 1 |-
FIQ 3 1 |
IRQ 4 1 |-
Prefetch Abort 5 1
déclenchée lors de I'étape | |[SWI 6 1 -
«execute» du pipeline Undefined Instruction|6 1 |-

Décalage du registre PC sauvegardé dans le registre LR

Exception Adresse de retour Dans certain cas, le registre PC a avancé au dela de I'ins-
Reset aucune truction qui a causé I'exception:
> en @, il faut revenir en arriére de deux instructions par
Data Abort® LR-8 A ; .
rapport a la valeur du PC sauvegardée dans le registre
FIQ, IRQ, prefetch Abort® [LR - 4 LR:
SWI, Undefined Instruction|LR > en @, il faut revenir en arriere d’'une seule instruction.

Ceci est du au pipeline d’exécution du processeur ARM.

Interruption : prise en compte dans le logiciel

Exécution
Programme

" Interruption

Exécution
Programme

Instruction 1

Instruction 2

D> Sauvegarde registres :
B> Blocage des interruptions ;
B> Passage en mode privilégié.

Instruction 3

Instruction 4

< [PC<=adresse hand/er]

’
’

Y ,
Instruction 1
Instruction 2 handler

Instruction 3 interruption

Y

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Entrée dans le handler d’exception:
=sauver l'adresse de linstruction suivante dans le re- =charger le registre LR dans le PC (avec le bon dé-

gistre LR aproprié ;

=copier le CPSR dans le SPSR du nouveau mode;
=changer le mode en modifiant les bits du CPSR;

Instruction 4

I> Restauration registres ;
> Activation des interruptions ;
> Passage en mode user.

Sortie du handler d’exception:

calage);
=restaurer le SPSR dans le CPSR, ce qui remettra
les bits de mode comme avant;

=aller chercher l'instruction suivante dans la table des =effacer le bit de blocage des interruptions s’il avait

vecteurs d’interruption.

été positionné.

Et sur un exemple d’interruption logicielle
¢ca donne quoi ?

Programmation assembleur ARM

On va utiliser 'assembleur as pour assembler I'exécutable :

Assembler program to print "Hello World!"

to stdout.

R7 - linux function number

™ @ (@ @ @ (@ (@

.global _start @ Provide program starting

@ address to linker

@ Set up the parameters to print hello world
@ and then call Linux to do it. .-

RO-R2 - parameters to linux function services

{/ ‘éliquette __start indique au «linker» le point d’entrée du programme}

- {On utilise un appel systéme pour faire l’affichagej

_start: mov RO, #1 @ 1 = StdOut .--~
1ldr R1, =helloworld @ string to print
mov R2, #13
mov R7, #4
svc 0 @ Call linux to print.--~
@ Set up the parameters to exit the program
@ and then call Linux to do it.
@ length of our string
@ linux write system call
mov RO, #0 @ Use 0 return code
mov R7, #1 @ Service command code 1
@ terminates this program ,’
svc 0 @ Call linux to terminate
.data -
helloworld: .ascii "Hello World!\n" .--~"

{On utilise un appel systéme pour terminer le programme}
4

+ .ascii indique a 'assembleur de mettre la chaine dans le segment data,

et d'utiliser I'étiquette pour avoir son adresse

T

Assemblage et exécution:

O— xterm
$ as -o HelloWorld.o HelloWorld.s

$ 1d -o HelloWorld HelloWorld.o
$./HelloWorld |

Hello World!
$

>
>
>

linstruction MOV déplace des données dans un registre.
le #4 indique une opérande directe, soit la valeur 4.
LDR R1, =helloworld charge le registre avec
I'adresse de la chaine.

svc 0 réalise une interruption logicielle pour donner
le contrdle au novau Linux.

Assembleur ARM: appel a Linux

Comment utiliser une fonctionnalité de I’'OS ?

_start: mov RO,

1ldr R1,
mov R2,
mov R7,
sve 0 @

#1 @ 1 = Stdout

=helloworld @ string to print
#13

#4

Call linux to print

Ici, on fait appel a 'appel systeme print:

> on indique dans le registre RO la destination stdout;

Les registres RO a R4 vont étre utilisés pour passer
les parametres a I'appel systeme.

Lors du retour de I'appel systeme, la valeur de re-
tour sera donnée dans le registre RO.

D> l'adresse de la chaine a afficher est mise dans le registre R1;
> le numeéro de I'appel systeme est donné dans le registre R7, ici c’est la valeur 4 pour indiquer print.

On réalise ensuite une interruption logicielle avec l'instruction svc 0:
le contrble, le CPU, est transmis au code du traitement de cette interruption;

>

>
>
>

le numéro de I'appel systéeme permet de savoir quel code doit étre appelé pour réaliser I'appel systeme ;

le code de traitement de l'interruption et de I'appel systeme est dans le noyau Linux;

grace au mécanisme d’interruption:

¢ le programme ne sait pas ou se trouve ce code de traitement: il n’y a méme pas accés pour cause de
protection d’acceés meémoire ;

¢ le code de traitement est exécuté dans un mode protégé du processeur: il accede a toutes les res-
sources de la machine, comme I'écran pour y afficher du texte.

¢ sile code de traitement de I'appel systeme est mis a jour, il 'y a pas de probléme : /e programme utilise
simplement un numéro pour l'identifier.

Utilisation de la commande ob jdump

On peut obtenir le désassemblage du programme

$ objdump -s —-d HelloWorld.o

HelloWorld.o: file format elf32- llttleanﬂ{nwﬂucnonsenlnodeLnﬂeEnMan]

Contents of section .text:
0000 0100ale3 14109fe5 0d20ale3 0470a0e3.”D..
0010 000000ef 0000a0e3 0170a0e3 000000ef Deveeenn
0020 00000000

Contents of section .data: les différents segments du programme
0000 48656c6c 6£f20576f 726c6421 Oa Hello World!.

Contents of section .ARM.attributes:
0000 41110000 00616561 62690001 07000000 A....aeabi......

0010 0801

Disassembly of section .text:_
= {Le segment de code]

00000000 <_start>:

0: e3a00001 mov r0, #1

4: e59f1014 1ldr rl, [pc, #20] ; 20 <_start+0x20>

8: e3a0200d mov r2, #13
c: e3a07004 mov r7, #4
mnemonique A . .

10: e£000000 sve 0x00000000_ . - 9 L’intérét du mode LittleEndian ?

14: e3a00000 mov _z0,- 46"~

18: |e3a07001 mov =" r7, #1 pour convertir un entier sur 4 octets en 1 octet,

lc: e£000000 svc 0x00000000)))

20: 00000000 .word _ 0x00000000 il suffit de lire que le premier octet. L

[valeur réelle de /’instruction]

Ici, on remarque que:
> iln’y a plus d’étiquettes comme dans le source assembleur : elles sont remplacées par des adresses;

D> les instructions sont indiquées avec leur valeur réelle, indiquée en hexadécimal en plus de leur
notation sous forme de mnémonique, comme €e3a00001 pourmov r0, #1.

Analyse du désassemblage

Décomposition d’une instruction

0: e3a00001
4: e59f1014
8: e3a0200d
c: e3a07004
10: ef000000

00000000 <_start>:

mov
1ldr
mov
mov
svc

r0, #1

rl, [pc, #20]
r2, #13

r7, #4
0x00000000

; 20 <_start+0x20>

Soit l'instruction €e3a00001 movr0, #1:

Hex Digit e 3

a

0

0

0

Binary

1110|0011

1100

0000

0000

0000

0000

0001

O Chaque instruction du code commence par un digit hexa a e :

¢ champs sur 4bits indiquant une exécution conditionnelle suivant les valeurs du registre CSPR;
¢ ci, la valeur est e qui indique que l'instruction doit étre réalisée de maniére inconditionnelle

O les 3bits suivants 001 indique le type des opérandes:
¢ ici, un registre et une valeur immédiate ;

O

O

registres ce qui n‘est pas le cas ici;
O les 12bits restants: la valeur immédiate, ici 1.

les 4bits suivants 0000 indiquent le registre RO ;
O les 4bits suivants 0000 indiquent un autre registre dans le cas ou le MOV travaillerait sur deux

les 4bits suivants 1110 est 'opcode pour l'instruction MOV ;
O le bit suivant 0 indique le type du parameétre pour le mode immédiat, qui ici ne sert pas;

Assembleur ARM

Le source:

_start: mov RO, #1 @ 1 = StdOut
ldr R1, =helloworld @ string to print
mov R2, #13
mov R7, #4
svc 0 @ Call linux to print

est devenu:
00000000 <_start>:
0: e3a00001 mov r0, #1
4. e59f1014 1dr rl, [pc, #20] ; 20 <_start+0x20>
8: e3a0200d mov r2, #13
c: e3a07004 mov r7, #4
10: ef000000 svc 0x00000000

1ldr R1, =helloworldestdevenu ldr rl, [pc, #20]; 20 <_start+0x20>

Lassembleur:
> I'étiquette =helloworld a été traduite en un décalage, «offset», depuis le «program counter» ;

> la chaine de caracteres a été placée 20*4 octets plus loin que l'origine du programme indiqué par
I'étiquette _start, c-a-d:

lc: ef000000 svc 0x00000000
20: 00000000 .word 0x00000000

juste apres le code.

> I'acces a cette mémoire est fait depuis un registre contenant déja une adresse, car une seule instruc-
tion ARM ne permet pas de charger une adresse entiere sur 32bits directement dans un registre.

Utilisation de gdb

(gdb)

$ gdb helloword

GNU gdb (Raspbian 10.1-1.7) 10.1.90.20210103-git
Copyright (C) 2021 Free Software Foundation, Inc.
Reading symbols from helloword...

(gdb) 1list

1

2 @

3 @ Assembler program to print "Hello World!"
4 @ to stdout.

5 @

6 @ RO-R2 - parameters to linux function services
7 @ R7 - linux function number

8 @

9

10 .global _start @ Provide program starting
(gdb) 1

11 @ address to linker

12 @ Set up the parameters to print hello world
13 @ and then call Linux to do it.

14 _start: mov RO, #1 @ 1 = StdoOut

15 ldr R1, =helloworld @ string to print

16 mov R2, #13

17 mov R7, #4

18 svce 0 @ Call linux to print

19

20 @ Set up the parameters to exit the program
(gdb) 1

21 @ and then call Linux to do it.

22 @ length of our string

23 @ linux write system call

24 mov RO, #0 @ Use 0 return code

25 mov R7, #1 @ Service command code 1

26 @ terminates this program

27 svc 0 @ Call linux to terminate

28 .data

29 helloworld: .ascii "Hello World!\n"

GDB
Command (short form)|Description
list (1) List the program
break (b) line Set breakpoint at line
run (r) Run the program
step (s) Single-step program

continue (c)

Continue running the program

quit (g or control-d)

Exit gdb

control-c

Interrupt the running program

info registers (i r)

Print out the registers

info break

Print out the breakpoints

delete n

Delete breakpoint n

x /nuf expression

Show contents of memory

Utilisation de gdb : désassemblage et pose de point d’arrét, «breakpoints»

O— xterm O— xterm
(gdb) disassemble _start (gdb) b _start
Dump of assembler code for function _start: Breakpoint 1 at 0x10074: file HelloWorld.s, line 14.
0x00010074 <+0>: mov r0, #1 (gdb) r
0x00010078 <+4>: 1ldr rl, [pc, #20] ; jﬁarting/ggﬁgggg/h 1 » P B
ome/pl e O_WOor __asm e owor
0 . 0x10094 <7start+32>__{décamge Breakpoint 1, _start () at HelloWorld.s:14
x0001007c <+8>: mov r2, #13 Y sterts o RO, M @ 1 = Stebu
0x00010080 <+12>: mov r7, #4 (gdb)is ' !
0x00010084 <+16>: svc 0x00000000 . .
0x00010088 <420>: nov £0, #0 i;db) in;:rrzéisgziiloworld @ string to print
0x0001008c <+24>: mov r7, #1 0 0x1 1
0x00010090 <+28>: svc 0x00000000 =1 0x0 0
0x00010094 <+32>: muleq r2, r8, r0 2 0x0 0
End of assembler dump. r3 0x0 0
(gdb) r4 0x0 0
r5 0x0 0
r6 0x0 0
r7 0x0 0
r8 0x0 0
r9 0x0 0
rl0 0x0 0
rll 0x0 0
rl2 0x0 0
sp 0x7efff620 0x7efff620 décalage
1r 0x0 0 %
pc 0x10078 0x10078 <_start+4>
cpsr 0x10 16
fpscr 0x0 0
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00010074

HelloWorld.s:14
breakpoint already hit 1 time

Utilisation de gdb : exécution, affichage registres, affichage mémoire

O— xterm

(gdb) r
Starting program: /home/pi/ASMRASPI/hello_world_asm/helloword

Breakpoint 1, _start () at HelloWorld.s:14

14 _start: mov RO, #1 Q@ 1 = Stdout

(gdb) s

15 ldr R1, =helloworld Q@ string to print
(gdb) info registers

r0 0x1 1

rl 0x0 0

r2 0x0 0

r3 0x0 0

r4 0x0 0

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

rl0 0x0 0

rll 0x0 0

rl2 0x0 0

sp 0x7efff620 0x7eff£620
1r 0x0 0

pc 0x10078 0x10078 <_start+4>
cpsr 0x10 16

fpscr 0x0 0

(gdb) info breakpoints

Num Type Disp Enb Address What
1 breakpoint keep y 0x00010074 HelloWorld.s:14

breakpoint already hit 1 time
(gdb) x /4ubft _start
0x10074 <_start>: 00000001 00000000 10100000 11100011
(gdb) x /4ubfi _start

0x10074 <_start>: mov r0, #1

=> 0x10078 <_start+4>: 1dr rl, [pc, #20] ; 0x10094 <_start+32>
0x1007c <_start+8>: mov r2, #13
0x10080 <_start+12>: mov r7, #4

(gdb) x /4ubfx _start

0x10074 <_start>: 0x01 0x00 0xal Oxe3

(gdb) x /4ubfd _start
0x10074 <_start>: 1 0 -96 -29

Architecture ARM et organisation mémoire

ARM family |ARM architecture byte
ARM7 ARM v4 l7l [TTT] lol
ARM9 ARM v5
half word
ARM11 |ARM v6 (I T T (I IT11]
Cortex-A |ARM v7-A 15 0
Cortex-R [ARM v7-R word
Gorimeyl | AR vl l31llllllllllllllllllllllllllllllllllol
MSB LSB
Big Endian vs Little Endian
word Byte 0 Byte 1 Byte 2 Byte 3 Instructions et accés mémoire:
HNEEEEEE NN EEEEEEENEEEEEEEEE ldr |Load Word
M3818 LgB ldrh |Load unsigned Half Word
Hioher Adg Idrsh{Load signed Half Word
igher ress
B IB)l/telsl 1] 9 A 7 IB}l/telOl T Idrb |Load unsigned Byte
Byte 2 Byte 1 Idrsb|Load signed Bytes
CITITTTTT] CTTTTTTIT] str |Store Word
Byte 1 Byte 2 strh |Store unsigned Half Word
LLLTTTTT] LLLTTTTT] strsh|Store signed Half Word
u lB)l/telOl 1] [lB)l/teISI 1] strb |Store unsigned Byte
Lower Address strsb|Store signed Byte
Big Endian Little Endian

Retour sur les registres

Number |Alias|Purpose

RO - General purpose
R1 - General purpose
R2 - General purpose
R3 - General purpose
R4 - General purpose
R5 - General purpose
R6 - General purpose
R7 - Holds Syscall Number
R8 - General purpose
R9 - General purpose
R10 - General purpose
R11 FP |Frame Pointer

Special Purpose Registers

R12 IP |Intra Procedural Call

R13 SP |Stack Pointer

R14 LR |Link Register

R15 PC |Program Counter

CPSR |- Current Program Status Register

Le registre d’état ou CPSR, «Current Program Status Register»

31|30|29|28(27| -|24| -|19-16| -|9(8|7|6(5|4 -0
N|z|C|V|Q J GE E|A|I|F|T| M

O Negative: N vaut 1 si la valeur est négative, et 0 si la valeur est positive ;
O Zero: Zvaut 1 sile résultat est zéro (par exemple lors d’'une comparaison), et 1 si le résultat n’est pas zéro;
O Carry: indique pour
¢ une opération d’addition s'il y a un bit de retenu comme résultat du calcul, c-a4-d un dépassement, «overflow», de
capacité;
¢ une opération de soustraction s’il y a un bit de retenu, c-a-d un dépassement, «underfow», de capacité;
& une opération de décalage, le bit qui a été décalé vers I'extérieur;
O oVerflow: pour I'addition et la soustraction, indique un «overflow».
Pour certaines autres instructions, ce bit peut étre utilisé pour indiquer une erreur.
O les bits liés aux interruptions:
o I:lorsqu’il est a 1: désactive les IRQ, «interrupt request>» ;
o F:lorsqu’il est a 1: désactive les FIQ, «Fast interrupt request» (par exemple : traiter les paquets réseau, les mou-
vements de la souris) ;
o A:lorsqu’il est a 1: désactive les abandons;
O les bits liés aux instructions :
o Thumb: lorsqu’il est a 1: indique des instructions compactes sur 16 bits;
o Jazelle: lorsqu’il est a 1: mode obsoléte pour I'exécution directe de bytecode Java;
O les autres bits:
¢ Q:lorsqu’il est a 1: indique un «underflow» ;
o GE: contrble le «Greater than Equal» dans le traitement des données SIMD ;
o E: contrble I'«endianness» pour le traitement des données.

O

M : indique si le processeur est en mode «user» ou «supervisor».

Branchement sur condition

On consulte le registre CPSR pour déterminer la condition:
B{condition} label

Condition Code|Meaning (for cmp or subs) Status of Flags
EQ Equal Z==

NE Not Equal Z==0

GT Signed Greater Than (Z==0) && (N==V)
LT Signed Less Than NI=V

GE Signed Greater Than or Equal N==V

LE Signed Less Than or Equal (Z==1) | | (N!=V)
CSor HS Unsigned Higher or Same (or Carry Set)|C==1

CCorlLO Unsigned Lower (or Carry Clear) C==0

Mi Negative (or Minus) N==1

PL Positive (or Plus) N==0

AL Always executed -

NV Never executed =

VS Signed Overflow V==1

VC No signed Overflow V==0

HI Unsigned Higher (C==1) && (Z==0)
LS Unsigned Lower or same (C==0) | | (Z==0)

Le jeu d’instruction ARM

Format d’une instruction

MNEMONIC{S}{condition} {Rd}, Operandl, Operand2

MNEMONIC Short name (mnemonic) of the instruction

{S} An optional suffix. If S is specified the condition flags are updated on the result of the operation

{condition} |Condition that is needed to be met in order for the instruction to be executed according to bit(s) of the CPSR

{Rd} Register (destination) for storing the result of the instruction
Operandl First operand: either a register or an immediate value
Operand?2 Second (flexible) operand: can be an immediate value (number) or a register with an optional shift

La seconde opérande est flexible, elle peut étre sous différentes formes : une valeur immédiate, un registre ou un registre avec un décalage :

#123 Immediate value (with limited set of values)

Rx Register x (like R1, R2, R3 ...)

Rx, ASR n|Register x with arithmetic shift right by n bits (1 <= n <= 32)

Rx, LSL n|Register x with logical shift left by n bits (0 <= n <= 31)

Rx, LSR n|Register x with logical shift right by n bits (1 <=n <= 32)

Rx, ROR

=}

Register x with rotate right by n bits (1 <=n <=31)

Rx, RRX [Register x with rotate right by one bit, with extend

Exemples d'instructions :

ADD RO, R1l, R2 Adds contents of R1 (Operand1) and R2 (Operand2 in a form of register) and stores the result into RO (Rd)
ADD RO, R1, #2 Adds contents of R1 (Operand1) and the value 2 (Operand2 in a form of an immediate value) and stores the result into RO (Rd)
MOVLE RO, #5 Moves number 5 (Operand2, because the compiler treats it as MOVLE RO, RO, #5) to RO (Rd) ONLY if the condition LE (Less Than or Equal)

is satisfied => CPSRIN], negative, bit at 1 (result of a previous instruction CMP)

MOV RO, R1, LSL #1|Moves the contents of R1 (Operand2 in a form of register with logical shift left) shifted left by one bit to RO (Rd). So if R1 had value 2, it gets
shifted left by one bit and becomes 4. 4 is then moved to RO.

Les instructions les plus utilisées

Instruction|Description Instruction |Description

MOV Move data EOR Bitwise XOR

MVN Move and negate LDR Load

ADD Addition STR Store

SUB Subtraction LDM Load Multiple

MUL Multiplication STM Store Multiple

LSL Logical Shift Left PUSH Push on Stack

LSR Logical Shift Right [POP Pop off Stack

ASR Arithmetic Shift Right|B Branch

ROR Rotate Right BL Branch with Link
CMP Compare BX Branch and eXchange
AND Bitwise AND BLX Branch with Link and eXchange
ORR Bitwise OR SWI/SVC |System Call

Instructions Load/Store

la valeur a l'indresse indiquée dans Rb

est chargée dans Ra

’
.
’

V e N
LDR Ra , [Rb]

STR Ra , [Rb]
NS—»

N
N
A

LDR R2, [RO] @ [RO] - origin address is the value found in RO.
STR R2, [R1] @ [R1] - destination address is the value found in R1.

la valeur de Ra est stockée

a l'adresse indiquée dans Rb

Exemple de code

.data
varl: .word 3
var2: .word 4
.text

.global _start

_start:

bkpt

/*
/*
/*

/*

ldr r0, adr_varl @
ldr rl, adr_var2 @ load the memory address of var2 via label adr_var2 into Rl
1ldr r2, [r0] @
str r2, [rl] @

the .data section is dynamically created and its addresses is not easily known */
variable 1 in memory */
variable 2 in memory */

start of the text (code) section */

load the memory address of varl via label adr_varl into RO

load the value (0x03) at memory address found in RO to register R2
store the value found in R2 (0x03) to the memory address found in Rl

adr_varl: .word varl /* address to varl stored here */
adr_var2: .word var2 /* address to var2 stored here */

Une instruction Load/Store peut utiliser un «offset» :

> avec une valeur immédiate ;

> la valeur d’un registre (comme sur I'exemple plus haut);
> la valeur d’un registre avec un décalage ;

Assemblage de I'exemple et analyse du code produit

O— xterm
$ arm-none-eabi-as exemple.S
$ 11
total 16K
drwxrwxr-x 2 pef pef 4.0K Nov 6 20:18 ./
drwxr-x—-- 85 pef pef 4.0K Nov 6 20:18 ../
—-rw-rw-r—-— 1 pef pef 772 Nov 6 20:18 a.out
-rw-rw-r—— 1 pef pef 741 Nov 6 20:17 exemple.S

$ arm-none-eabi-objdump -d a.out
a.out: file format elf32-littlearm

Disassembly of section .text:

[adressage relatif par rapport au registre pc]
00000000 <_start>: p=
0: e59f000c 1dr r0, [pc, #12] @ 14 <adr_varl>-
4: e59f100c 1ldr rl, [pc, #12] Q@ 18 <adr_var2>
8: 5902000 1ldr r2, [x0]
@3 e5812000 str r2, [rl]
10: 1200070 bkpt 0x0000
00000014 <adr_varl>:
14: 00000000 .word 0x00000000
00000018 <adr_var2>:
18: 00000004 .word 0x00000004

Pour calculer la valeur 12 de I'accés par offset de l'instruction a I'adresse 0, on sait que :

> lors de I'exécution de l'instruction a I'adresse 0, le pc est déja, deux instructions en avant;

> chaque instruction est sur 32bits ou 4 octects;

> ladonnée «addr vari» est a I'adresse 20, «14 en hexa», soit un décalage de 20 — (2+4) = 12 par rapport a la valeur courante
dupc

Pour l'instruction a I'adresse 4, c’est la méme chose avec une donnée «addr_var2» en adresse 24, «18 en hexa».

Autre exemple

Utilisation d’un registre et d’un offset avec mise a jour du registre

.data
varl: .word 3
var2: .word 4
.text

.global _start

_start:

ldr r0, adr_varl @ load the memory address of varl via label adr_varl into RO
ldr rl, adr_var2 @ load the memory address of var2 via label adr_var2 into Rl

1ldr r2, [rx0] @ load the value (0x03) at memory address found in RO to register R2
str r2, [rl, #2] @ address mode: offset. Store the value found in R2 (0x03) to the memory ad
dress found in R1 plus 2. Base register (R1l) unmodified. <J
str r2, [rl, #4]! @ address mode: pre-indexed. Store the value found in R2 (0x03) to the memory
address found in Rl plus 4. Base register (R1l) modified: R1 = R1+4 <J
1dr r3, [rl], #4 @ address mode: post-indexed. Load the value at memory address found in Rl to
register R3. Base register (R1) modified: Rl = R1+4 <J
bkpt
adr_varl: .word varl
adr_var2: .word var2

Différents accés

On peut utiliser la valeur d’un registre pour servir d'offset :

str r2, [rl, r2] @ address mode: offset. Store the value found in R2
found in R1 with the offset R2 (0x03). Base register unmodified.

(0x03) to the memory address *J

On peut modifier 'adresse de base avant de I'utiliser:

str r2, [rl, r2]! @ address mode: pre-indexed. Store value found in R2 (0x03)
found in R1 with the offset R2 (0x03). Base register modified: R1 = R1+R2.

to the memory address‘J

On peut modifier 'adresse de base apreés de I'utiliser :

1dr r3, [rl], r2 @ address mode: post—-indexed. Load value at memory address found in Rl to register
R3. Then modify base register: R1 = RI+R2. 4J

1 GDB: une meilleure interface avec dashboard

Linterface dashboard est récupérable a https://github.com/cyrus—-and/gdb-dashboard

Cette extension de gdb est écrite en Python et ajoute les fonctionnalités suivantes:

O la commande dashboard affiche un écran composé de:

<

Assembly

0x000006e0 2 isb sy

0x000006e4 ? cpsid i

0x000006e6 ? bx 1r

0x000006e8 ? 1ldr r3, [pc, #52] ; (0x720)

0x000006ea ? 1ldr r2, [pc, #56] ;7 (0x724)

0x000006ec ? 1ldr rl, [pc, #56] 7 (0x728)

0x000006ee ? mov r0, sp

0x000006f0 ? cmp r0, r2

0x000006f2 ? bhi.n Ox6fc

0x000006£f4 ? cmp r0, r3

Breakpoints

Expressions

History

Memory

Ssp

0x200001b0 00 00 00 00 50 08 00 20 06 00 00 00 8d 06 00 00 P

0x200001cO 00 00 00 00 fd ff ff f£f 01 00 00 00 08 08 00 20 +« v vvevvcvennn

0x200001d0 00 00 00 10 00 ed 00 e0 08 00 00 00 d3 01 00 00 cvcvececeenennnn

0x200001e0 7c¢ 06 00 00 00 00 00 41 95 01 00 00 00 00 00 00 [«----- Avevrenns

Registers
r0 0x20000828 r4 0x20000808 r8 0x00000008 rl2 0x20000770 xPSR 0x410e000e primask 0x00
rl 0x20000850 r5 0x00000000 r9 0x00000009 sp 0x200001b0 fpscr 0x00000000 basepri 0x00
r2 0x10000000 r6 0x20000850 rl0 0x0000000a 1lr 0x000002bl msp 0x200001b0 faultmask 0x00
r3 0x00000000 r7 0x00000007 rll 0x0000000b pc 0x000006e0 psp 0x200007a8 control 0x00

Source

Stack

[0] from 0x000006e0

Threads

[1] id 0 from 0x000006e0

Variables

GDB : Contrble de I'exécution

ctrl-cl|interrompt 'exécution du program

c/continue|reprend 'exécution

s/steplavance d’une insrustion dans une fonction

s 1o0lavance de 10 instructions

n/next|avance a la prochaine instruction dans la fonction

u/until 20|avance jusqu’a la ligne 20 du fichier courant

f/finish|avance jusqu’a la fin de la fonction

run|démarre le programme

b/break fonc|mets un «breakpoint» lors de I'exécution de la fonc

b main.c:fonc|mets un «breakpoint» sur fonc du fichier «main.c»

b main.c:18 if var > 20|breakpoint seulement si var > 20

tbreak main|se déclenche une fois et s’efface ensuite

info breakpoints|donne la liste des breakpoints

ignore 3 20|ignorer 20 fois le breakpoint 3

disable 3|désactive le breakpoint 3

delete 3|supprime le breakpoint 3

monitor reset halt|réinitialise le firmware dans OpenOCD et s’arréte aprés le reset

GDB : observer et prendre connaissance

info localsl|les variables locales

info variables|les variables globales

info args|les arguments de la fonction

info registers|les valeurs des registres

watch var

surveille les modifications de var

watch montableau[10].val

surveille le champ val de la 11°™€ structure

watch *Oxdeadcafe

surveille le contenu de la mémoire par adresse

watch var if var > 20

surveillance conditionnelle

watch var if var - 10 > 20

avec une expression

info watchpoints

donne la liste des watchpoints

delete 5

supprime la 5°™€ surveillance

bt |«backtrace»:

I'historique des appels de fonction

frame|la «frame» courante dans la pile

up|remonter dans la pile d’appel

down|descendre dans la pile d’appel

GDB : afficher et examiner les contenus

p/print /FMT expression|a (address) o (octal)
¢ (char) t (binary int)
d (decimal int) u (unsigned decimal int)
f (float) x (hex int)
p var|affiche la valeur de var
p x+y|affiche le résultat de I'expression
p/x smain|affiche I'adresse de la fonction main
p/x $ralaffiche le contenu du registre «r4»
p/a *(uint32_t[8] *) Oxdeadbabe |affiche un tableau de 8 entier 'adresse donnée
x /FMT adresse|X (hex) b (byte)

X (
d (decimal)

h (halfword 2B)

w (word 4B)

u (unsigned decimal)
f

x/4c Oxdeadbabe

affiche 4 char a I'adresse indiquée

x/4xw &main

affiche 4 mots en hexa a I'adresse de main

(float) a (address)
i (instruction) c (char)
s (string) z (padded hex)
x var|affiche 'adresse de var

GDB : d’autres fonctions

Afficher le source et les instructions machine

1list|affiche le source a I'endroit courant

list *0x12341234|affiche le source a I'adresse indiquée

list main.c:func|affiche le source de la fonction définie dans le fichier main.c

disas func|desassemble la fonction

Rechercher dans la mémoire

find /b 0x0,0x10000, 'H','e','1', '1', 'o'|chercher une séquence entre 0x0 et 0x10000

—0x581f 1 pattern found

x/s 0x581f|examiner la chaine a 'adresse 0x581f

= "Hello world !"

Charger la table des Symboles

symbol-file mon_exec.elf|charge un nouveau fichier

Déboguer le SoC

DAP, «<Debug Access Port» : I'interface de déboguage

O des registres permettant d’effectuer des opérations sur le processeur;
O des broches permettant & un débogueur externe de s’y connecter;
= lire/écrire la mémoire et les registres du processeur.

La connexion au DAP

O le JTAG, «Joint Test Action Group», standard industriel IEEE 1149.1 pour le TAP, «Test Access Port>» :
> teste les PCBs apres leur fabrication;
> au moins 4 broches
* TDI, «Test Data In» ; * TMS, «Test Mode Select> ;
* TDO, «Test Data Out» ; * + 1 optionnelle TRST, «Test Reset» ;
*x TCK, «Test Clock» ;
D> des registres a décalage + FSM, «Finite State Machine» pour échanger des données;;
O le SWD, «Serial Wire Debug»:
o similaire au JTAG mais avec moins de broches:
* SWDIO: broche d’E/S échantillonée su «front montant» ;
* SWCLK: référence de temps pour ces E/S;
La sonde, ou «probe» de déboguage

O FTDI, «Future Technology Devices International» :
> pont avec 'USB;
> processeur MPSSE, «Multi Protocol Synchronous Serial Engine» : UART, JTAG, SWD;
O CMSIS-DAP: version ARM d’un DAPLink:
> utilise un micro-contréleur dédié avec un firmware dédié, connecté au micro-contréleur a déboguer;
> le micro-contrdleur dédié assure l'interface USB et le dialogue SWD/JTAG avec 'autre MCU.

OpenOCD, «Open On-Chip Debugger»

OpenOCD assure le contrdle de I'interface de déboguage :
O Version SWD:

O

gdb TCP 3333
openocd
TCP Server

telnet « ~ 4444

O Version JTAG:

gdb _TCP

Y

uSB

le SWD en détail sur le microbit v2:

TCP
telnet

3333
openocd

Server
4444

USB

PC

USB
s St

* Mass Storage|

* WebUSB

OpenOCD ouvre deux ports TCP:
D> en 4444 : pour le contréler;
D> en 3333: pour les échanges avec gdb;

On peut aussi contréler OpenOCD depuis gdb avec la commande «monitor».

MCU SWD Target
interface MCU
TARGET MCU
INTERFACE MCU
Application
. SWD micro:bit runtime CODAL
DAPLink
UART
|S-DAP SoftDevice
JTAG jtag Target
probe MCU

OpenOCD

;] N L <Tool C Il J le modéle du CPU
est con igurapble en « ool Comman anguage» . ’ le nom du CPU

O— xterm Z 7

S openocd —-f interface/cmsis-dap.cfg —-f target/nrf52.cfg “c "nrf52.cpusconfigure -rtos RIOT"

a sortie de |a commande :

O— xterm

Open On-Chip Debugger 0.12.0-01004-g9%ea7f3d64-dirty (2025-11-12-10:33)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : Using CMSIS-DAPv2 interface with VID:PID=0x0d28:0x0204,
serial=9906360200052820fa0bcO0bc9fe7alee000000006e052820
Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: Test domain timer supported
Info : CMSIS-DAP: FW Version = 2.1.0
Info : CMSIS-DAP: Serial# = 9906360200052820fa0bc0bc9fe7alee000000006e052820
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 0
Info : CMSIS-DAP: Interface ready
Info : clock speed 1000 kHz
Info : SWD DPIDR 0x2ba01477
Info : [nrf52.cpu] Cortex-M4 rOpl processor detected
Info : [nrf52.cpu] target has 6 breakpoints, 4 watchpoints
Info : starting gdb server for nrf52.cpu on 3333
Info : Listening on port 3333 for gdb connections
Info : accepting 'gdb' connection on tcp/3333
Error: No symbols for RIOT
Info : nRF52833-xxAA (build code: A0) 512kB Flash, 128kB RAM

Ici, on lance OpenOCD avec les oprtions suivantes :

> utilisation de l'interface CMSIS—DAP = utilisation du microbit;

> le microbit v2 utilise un Cortex MO de chez nrf, le 52833, d’ou le fichier nr£52 . cfg;

> on utilise les connaissances supplémentaires pour I'analyse d’un RTOS avec l'option —rtos RIOT.

OpenOCD

Le scriptnrf52.cfg:

#
Nordic nRF52 series: ARM Cortex-M4 @ 64 MHz
#

source [find target/swj-dp.tcl]

if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME _ - - -[nommage du CPUJ
} else {
set _CHIPNAME nrf52

}

Work-area is a space in RAM used for flash programming
By default use 16kB
if { [info exists WORKAREASIZE] } {
set _WORKAREASIZE SWORKAREASIZE
} else {
set _WORKAREASIZE 0x4000

}

if { [info exists CPUTAPID] } {
set _CPUTAPID S$SCPUTAPID

} else {
set _CPUTAPID 0x2ba01477

}

swj_newdap $_CHIPNAME cpu -expected-id $_CPUTAPID
dap create $_CHIPNAME.dap -chain-position $_CHIPNAME.cpu

set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME cortex_m -dap $_CHIPNAME.dap

adapter speed 1000zZ

Des usages avances

Désassemblage et code

O— xterm
(gdb) disassemble /s main
>>> disassemble /s main
Dump of assembler code for function main:
/home/pef/PROJECTS/EMBEDDED/JTAG/RIOT/examples/networking/dtls/dtls—echo/main.c:
35 {
36 /* we need a message queue for the thread running the shell in order to
37 * receive potentially fast incoming networking packets */
38 msg_init_queue (_main_msg_queue, MAIN_QUEUE_SIZE) ;
0x000007a0 <+0>: add.w rl, r0, #8
35 {
0x000007a4 <+4>: ldr.w r0, [r3, r2, 1lsl #2]
36 /* we need a message queue for the thread running the shell in order to
37 * receive potentially fast incoming networking packets */
38 msg_init_queue (_main_msg_gqueue, MAIN_QUEUE_SIZE) ;
0x000007a8 <+8>: cbz r0, Ox7ca <main+42>
0x000007aa <+10>: 1ldr r0, [r0O, #0]
>>> disassemble /r main _._____._ —-- - - -ﬂ les octets sont en «instruction order», ici en «little endian»
Dump of assembler code for function main:
0x000007a0 <+0>: £100 0108 add.w rl, r0, #8
0x000007a4 <+4>: £853 0022 ldr.w r0, [r3, r2, 1lsl #2]
0x000007a8 <+8>: b178 cbz r0, Ox7ca <main+42>
0x000007aa <+10>: 6800 1ldr r0, [r0, #0]
>>> disassemble /b main ______________
Dump of assembler code for function main: ﬂ les octets sont en «memory order»
0x000007a0 <+0>: 00 f1 08 01 add.w rl, r0, #8
0x000007a4 <+4>: 53 £8 22 00 ldr.w r0, [r3, r2, 1lsl #2]
0x000007a8 <+8>: 78 bl cbz r0, Ox7ca <main+42>
0x000007aa <+10>: 00 68 ldr r0, [r0, #0]

Afficher les contenus des registres

O Xterm
>>> p $Sp
$1 = (void *) 0x20000200 <remote>
>>> p $pc
$2 = (void (*) ()) Oxblc <_msg_send+16>

Modifier le contenu de registre

>>> p $pc

$3 = (void (*) ())
>>> set $pc = 0x20
>>> p $pc

$4 = (void (*) ()

>>> set $pc = main .-~

_ {uti/iser un symbole}

0x7a0 <main>
000200

0x20000200 <remote>

>>> info files

v2/dtls_echo.elf".

v2/dtls_echo.elf',

0x00000000
0x00015c80
0x20000000
0x20000200
0x20000370
0x20005910

Symbols from "/home/pef/PROJECTS/EMBEDDED/JTAG/RIOT/examples/networking/dtls/dtls—echo/bin/microbit

Extended remote target using gdb-specific protocol:
" /home/pef/PROJECTS/EMBEDDED/JTAG/RIOT/examples/networking/dtls/dtls-echo/bin/microbit-

file type elf32-littlearm.

Entry point: 0x15a8

- 0x00015c80 is .text

- 0x00015c88 is .ARM.exidx
- 0x20000200 is .stack

- 0x20000370 is .relocate
- 0x20005910 is .bss

- 0x20005910 is .noinit

pu
o

OpenOCD : support des RTOS

Dans OpenOCD, on active le support du RTOS et on indique la nature du RTOS::

O— xterm

$ openocd -f interface/cmsis-dap.cfg -f target/nrf52.cfg -c "nrf52.cpu configure -rtos RIOT"

FreeRTOS symbols

pxCurrentTCB, pxReadyTasksLists, xDelayedTaskListl, xDelayedTaskList2,
pxDelayedTaskList, pxOverflowDelayedTaskList, xPendingReadyList,
uxCurrentNumberOfTasks, uxTopUsedPriority, xSchedulerRunning.

RIOT symbols

sched_threads, sched_num threads, sched_active_pid, max_threads,
, C_tcb_name_offset.

Zephyr symbols

_kernel, _kernel openocd_offsets, _kernel openocd size t_size

Obtenir des infos sur RIOT

Assembly

0x00000786 sched_run+10 cbnz r3, 0x7d8 <sched_run+92>
0x00000788 sched_run+12 cbz r5, 0x790 <sched_run+20>
0x0000078a sched_run+14 mov r0, r5

0x0000078c sched_run+l16 bl 0x710 <_unschedule>
0x00000790 sched_run+20 bl Oxbed4 <sched_arch_idle>
0x00000794 sched_run+24 1ldr r3, [r4, #0]

0x00000796 sched_run+26 cmp r3, #0

0x00000798 sched_run+28 beg.n 0x790 <sched_run+20>
0x000007%9a sched_run+30 movs 0, #0

0x0000079¢c sched_run+32 1ldr r2, [pc, #68] Q
Breakpoints

[6] break at 0x0000086¢c in /home/pef/RIOT/core/include/t
for sched.c:sched_switch

Expressions

History
$$2 = 0x200002ac <receiver_stack+12>: 536871596
$$1 = 0x200002c0 <receiver_stack+32>: 536871616
$$0 = <optimized out>

Memory

Registers

r0 0x20000e70 r4 0x200014a8 r8 0x00000008 r
rl 0x200014f0 r5 0x20000e70 r9 0x00000009
r2 0x20000aa0 r6 0x200014f0 rl0 0x0000000a
r3 0x00000000 r7 0x00000000 rll 0x0000000b
Source

155 active_thread = NULL;

156 }

157

158 do {

159 sched_arch_idle () ;

160 } while (!runqueue_bitcache);

161 }

162

163 sched_context_switch_request = 0;

164

Stack

(0x7e4 <sched_run+104>)

hread.h:417

12 0x00000000
sp 0x200001b0
1r 0x00000795
pc 0x00000794

[0] from 0x00000794 in sched_run+24 at /home/pef/RIOT/core/sched.c:160
[1] from 0x00000b94 in isr_pendsv+12 at /home/pef/RIOT/cpu/cortexm_common/thread_arch.c:306

xPSR
fpscr
msp
psp

0x6100000e
0x00000000
0x200001b0
0x20000e08

primask
basepri
faultmask
control

0x01
0x00
0x00
0x00

Obtenir des infos sur RIOT

Threads

[1] id 0 from 0x00000794 in sched_run+24 at /home/pef/RIOT/core/sched.c:160

Variables

loc active_thread = 0x0 <tsrb_add>: {sp = 0x20000200 <heap_top> "1\033", status = 153,priority = 12
"\f',pid = 0.., previous_thread = 0x20000e70 <cipher_stack+976>: {sp = 0x20000de4 <cipher_stack+836>
"\377\377\377\377\360\02..., nextrg = <optimized out>, next_thread = <optimized out>

>>> p active_thread
$22 = (thread_t *) 0x0 <tsrb_add>
>>> ptype tsrb_add
type = int (tsrb_t *, const uint8_t *, size_t)
>>> ptype/o tsrb_add
type = int (tsrb_t *, const uint8_t *, size_t)
>>> p *active_thread
$23 = {

sp = 0x20000200 <heap_top> "1\033"

status = 153,

priority = 12 '\f'

pid = 0,

rg_entry = {

next = 0xc35 <nmi_handler>

b
wait_data = Oxbfl <hard_fault_default>,

msg_waiters = {

next = 0xc45 <mem_manage_default>
} ’
msg_queue = {

read_count = 3157,

write_count = 3173,

mask = 0

} !

msg_array = 0x0 <tsrb_add>,
stack_start = 0x0 <tsrb_add>,
name = 0x0 <tsrb_add>,
stack_size = 3029

Obtenir des infos sur RIOT

>>> ptype/o thread_t
type = struct _thread {
/* 0 | 4 */ char *sp;
/* 4 | 1 x/ thread_status_t status;
VA 5 | 1 */ uint8_t priority;
/* 6 | 2 */ kernel_pid_t pid;
VA 8 | 4 x/ clist_node_t rqg_entry;
/* 12 | 4 */ void *wait_data;
/% 16 | 4 x/ list_node_t msg_waiters;
/* 20 | 12 */ cib_t msg_qgueue;
7% 32 | 4 x/ msg_t *msg_array;
/* 36 | 4 */ char *stack_start;
/* 40 | 4 */ const char *name;
/* 44 | 4 */ int stack_size;
/* total size (bytes): 48
}
>>>

*/

ARM Semi-hosting : exécuter du code sans périphérique

O mécanisme permettant & un processeur ARM d'utiliser les ressources de I'h6te pour ses E/S;

= Trés utile lors du développement, lorsque I'on ne dispose pas d’'une UART, d’'un écran ou de systéme
de fichier;

O fonctionnement:
> la cible charge des valeurs dans les registres:
* r0:lanature de l'ordre, par exemple 0x04 pour écrire un message sur la sortie standard;
* r1:un paramétre pour 'ordre donné, par exemple I'adresse de la chaine pour la sortie;
la cible exécute une instructions BKPT en ARMv7 (Cortex-M):
le débogueur, «gdb», les intercepte ;
le débogeur exécute les ordres demandeés sur I'héte ;
un résultat est inséré en retour dans les registres de la cible et un résultat peut étre affiché dans
la sortie d’'OpenOCD (si un affichage a été demandé).
O Inconvénient: ralentit le code;

—| Attention I

Linstruction «<BKPT» ne fonctionne que si un débogueur matériel comme OpenOCD+SWD est
connecté.

vV V VYV

=>Sinon, le programme plante !

Exemple de Semi-hosting

.syntax unified @ Use unified assembly syntax

.cpu cortex—mé4 @ Target Cortex-M4 (nRF52833)

. thumb @ Use Thumb instruction set

.section .text

.global _start @ Entry point for the linker

_start:

@ Initialize stack pointer (adjust based on linker script)

1ldr r0, =0x20010000 @ Example stack top (64KB SRAM, adjust per linker)
mov sp, r0

@ Prepare semihosting call for SYS_WRITEO

movs r0, #0x04 @ SYS_WRITEO operation code
ldr rl, =message @ Pointer to null-terminated string
bkpt 0xAB @ Trigger semihosting breakpoint _ _

NN ~[L’ezppel du semi—hosting]

@ Infinite loop to keep program running
loop:
b loop

.section .rodata
message:

.asciz "Hello from micro:bit v2 via semihosting!\n" @ Null-terminated string

O— xterm

Dans gdb:

>>> monitor arm semihosting enable

O— xterm

Dans OpenOCD: Info : [nrfb52.cpu] Cortex-M4 rOpl processor detected

Info : [nrf52.cpu] target has 6 breakpoints, 4 watchpoints
Info : starting gdb server for nrf52.cpu on 3333

Info : Listening on port 3333 for gdb connections

Info : accepting 'gdb' connection on tcp/3333
Info : nRF52833-xxAA (build code: AO) 512kB Flash, 128kB RAM

Hello from micro:bit v2 via semihosting!

Ecrire et exécuter un programme en RAM seulement
On va modifier le fichier utilisé par le linker :

MEMORY
{
RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 128K N
} \\
\\
SECTIONS ‘[Seule la RAM est définie]
{
.text :
{
(.text) /* Code */
* (.rodata*) /* Read-only data (e.g., string for SYS_WRITEO) */
} > RAM
.bss :
{
(.bss) /* Uninitialized data */
} > RAM
/* Stack at the top of SRAM */
_stack_top = ORIGIN(RAM) + LENGTH (RAM) ; -
} “*{ On place le début de la pile a la fin de la mémoire)—

O Une seule zone mémoire: la RAM;
O placement des sections .text, .rodata et .bss en RAM dans cet ordre;

O inutile d’initialiser la mémoire de la section .bss dans le code.

—| Attention I

La table des vecteurs d’interruption est toujours dans la flash...

Juste en RAM

.syntax unified
.cpu cortex-m4
. thumb

.section .text
.global _start

_start:

/* Initialize stack pointer to top of SRAM */

ldr r0, =_stack_top /* Defined in linker script (0x20020000) */
mov sp, r0

/* Semihosting call for SYS_WRITEO */

movs r0, #0x04 /* SYS_WRITEO operation code */
1dr rl, =message /* Pointer to string in RAM */
bkpt 0xAB /* Trigger semihosting */

/* Infinite loop */
loop:
b loop

.section .rodata
message:

.asciz "Hello from micro:bit v2 via semihosting in RAM!\n"

