
Rappels Programmation ARM
Utilisation OpenOCD/GDB



Architecture du processeur ARM : composants logiques et chemins des données

54 Chapter 3

3.1 CPU Components and Data Paths

The CPU is composed of data storage and computational components connected together by a
set of buses. The most important components of the CPU are the registers, where data is
stored, and the arithmetic and logic unit (ALU), where arithmetic and logical operations are
performed on the data. Some CPUs also have dedicated hardware units for multiplication
and/or division. Fig. 3.1 shows the major components of the ARM CPU and the buses that
connect the components together. These buses provide pathways for the data to move between

Registers

ALU

Memory
and

I/O devices

Multiplier Shifter

Incrementer

Address
register

A bus

ARM CPU

Program counter bus

Incrementer bus

ALU bus
Data in

Address bus

Data outB bus

Figure 3.1
The ARM processor architecture.

□ deux registres peuvent servir de source
pour une instruction en passant par les bus
A et B ;

□ les données sur le bus B passent par un
«shifter» : on peut décaler la seconde opé-
rande avant qu’elle atteigne l’ALU ;

□ les bus A et B peuvent fournir des opérandes
pour le «multiplier» et le «multiplier» peut
fournir des données pour les bs A et B ;

□ les données en lecture depuis la mémoire
ou des I/Os peuvent aller directement dans
l’ALU puis dans un registre.

□ les données en écriture vers la mémoire ou
dans les I/Os sont prises directement dans
le bus B, qui peuvent provenir de regsitres,
mais ces données ne peuvent être modi-
fiées sur le chemin.

□ le registre d’adresse est un registre temporaire utilisé à chaque opération de lecture/écriture mémoire/I/Os.
Peut être chargé : ⋄ depuis le «program counter» pour chercher, «fetch», la prochaine instruction ;

⋄ depuis l’ALU pour permettre des modes d’adressages où un registre est utilisé comme adresse de
base et un décalage est calculé à la volée.
Après l’accès, l’adresse de base peut être incrémentée et cette valeur stockée dans un registre ;
⟹utilisé pour incrémenter le «program counter» à chaque instruction ;
⟹utilisé pour certains mode d’adressage où un pointeur est incrémenté à chaque accès mémoire.



L’architecture ARM : les registres du processeur
Le processeur dispose de 16 registres

□ R0 à R12 : 13 registres à usage générique utilisable comme
on le veut ;

□ R13 : le registre de pile, «stack» ;

□ R14 : le registre de lien, «link» ;
1

□ R15 : le «program counter» ou registre ordinal.

1 Ces registres sont utilisés dans le cas des appels de
fonction :
Le «link register» contient l’adresse de retour après exé-
cution de la fonction.
Le «stack register» contient l’adresse du sommet de la
pile, où on empilera les valeurs courantes des registres,
et pour créer les variables locales de la fonction appelée.

□ le CPSR, «Current Program Status Register» : registre d’état contient des bits d’information sur la dernière instruction
utilisée. Utilisé notamment pour les conditions et branchements.

Exécution des instructions

Effet Pipeline Chaque instruction est exécutée en trois cycles d’horloge :
⊳ un cycle pour le chargement de l’instruction depuis la mémoire : premier

étage du pipeline ;

⊳ un cycle pour décoder l’instruction : second étage du pipeline ;

⊳ un cycle pour l’exécution : troisième étage du pipeline ;

Lorsqu’une instruction quitte le premier étage du pipeline, une nouvelle instruction
peut y entrer :

⟹ une instruction sort à chaque cycle du pipeline

⟹ une séquence d’instruction est exécutée en un cycle chacune !



Processeur ARM : le pipeline d’exécution
1 fetch 2 decode 3 execute

ADD

SUB ADD

STR SUB ADD

En ARMv7 le pipeline a 3 étapes :
□ fetch : charge une instruction depuis la mémoire ;

□ decode : identifie l’instruction à exécuter et établit les
chemins passant par les bus d’échanges ;

□ execute : exécute l’instruction et écrit le résultat dans
un registre.

Pipeline et «program counter»

0x8000 LDR pc
1

,[pc,#0]
2

0x8004 NOP
0x8008 NOP
0x800C DCD JumpAddress

La notation assembleur LDR pc, [pc,#0] se traduit par :
⊳ charge dans PC, «program counter» 1 ;
⊳ le contenu de PC, «program counter», + 0 2 .
⟹ce qui permet un adressage par décalage.

Mais que vaut PC ?
⟹cela dépend du pipeline d’instruction :

NOP
1

NOP
2

LDR
3

Le PC évolue de la manière suivante :
1. étape 1 du pipeline : PC = 0x8000 pour l’instruction LDR ;
2. étape 2 du pipeline : PC = 0x8004 pour l’instruction NOP ;
3. étape 3 du pipeline : PC = 0x8008 pour l’instruction NOP ;

⟹losrque l’instruction LDR est exécutée dans l’étape 3 du pipeline, PC vaut 0x8008 !



L’architecture ARM : le format des instructions

31-28 27-25 24-21 20 19-16 15-12 11-0

Condition Operand type OpCode Set Condition
Codes

Operand register Destination
register

Immediate
Operand

□ Condition : autorise l’exécution de l’instruction suivant les bits dans le registre CPSR ;

□ Operand type :spécifie le format de l’opérande des bist 19-0 :
⋄ par exemple deux registres suivis d’une opérande immédiate ;

□ Opcode : quelle instruction on veut réaliser comme Add ou MUL ;

□ Set condition code : un seul bit indiquant si l’instruction doit mettre à jour le registre CPSR, valeur
0, ou non, valeur 1 ;

□ Operand register : un registre à utiliser comme entrée ;

□ Destination register : un registre à utiliser comme sortie ;

□ Immediate operand : une donnée de petite taille que l’on peut donner directement dans l’instruction.
⋄ exemple : si on veut ajouter 1 à un registre, on peut mettre la donnée à 1 ce qui évite de mettre

1 dans un autre registre et de faire la somme de ces deux registres.



Architecture ARM : le processeur
Architecture 32 bits et 64 bits

□ En 32bits :
⋄ les adresses mémoires sont sur 32 bits ;
⋄ les registres du processeur sont sur 32 bits ;

□ En 64bits :
⋄ les adresses mémoires sont sur 64 bits ;
⋄ les registres du processeur sont sur 64 bits ;

□ En 32bits comme en 64bits, les instructions sont sur 32bits :
⋄ Comment peut-on charger une variable depuis la mémoire dasn un regsitre donné avec une instruction sur 32bits ?

⋆ l’instruction fait 32bits ;
⋆ 4bits sont utilisés pour un opcode ;
⋆ 4bits pour une instruction conditionnelle ;
⋆ 3bits sont utilisés pour indiquer le type de l’opérande ;
⋆ 1bit pour indiquer si l’opération affecte le CPSR ;
⋆ 4bits sont nécessaires pour indiquer le registre ;
⟹il reste 16bits pour indiquer l’adresse mémoire !
⟹il reste 12bits pour indiquer l’adresse mémoire si on a besoin d’indiquer 2 registres !

□ Comment faire ?
⋄ on peut utiliser un registre pour indiquer l’adresse mémoire : accés mémoire indirect
⋄ Mais comment charger l’adresse mémoire initialement dans le registre en une seule instruction ?
⋄ charger dans deux registres séparés l’adresse désirée, puis décaler et combiner les deux registres en un seul

registre ⟹4 instructions pour arriver au résultat ce qui est excessif !
⋄ Et alors ? On peut utiliser le PC, «Program Counter» pour charger une mémoire pas trop éloignée, à 12bits de

décalage par rapport au PC, soient 4096 octets accessibles et beaucoup plus par décalage de ces bits.



Utilisation des registres
Définition de contenu

label: .byte 74, 0112, 0b00101010, 0x4A, 0X4a, 'J', 'H' + 2
.word 0x1234ABCD, -1434
.ascii "Hello World\n"

Charger un registre

L’instruction LDR peut servir à charger une addresse dans le registe ou la donnée pointée par cette addresse.
Il est également possible d’indexer la mémoire en utilisant la valeur d’un registre comme valeur d’index.
⊳ addressage relatif au PC, «Program Counter» ;
⊳ charger depuis la mémoire ;
⊳ indexer à travers la mémoire.

Adressage relatif au PC
Si les données ne sont pas loin de l’instruction utilisant leur adresse, on peut utiliser cet adressage :

LDR R1,=helloworld

ce qui donne après assemblage :
LDR R1, [pc, #20]

Ici, la valeur du décalage est de 0x20 en hexa, soit 32.

Ce décalage est :
⊳ déterminé lors de l’assemblage ;
⊳ sur 12 bits dans l’instruction elle-même :

⋄ ce qui donne de 0 à 4095 ;
⋄ un bit est utilisé dans l’instruction pour indiquer dans quel sens :

⟹le décalage peut être de ±4095 words au maximum.
⋄ le décalage peut être par multiple de 1 à 2 octets, comme indiqué

dans la table ⟹

LDR{type} Rt, =label

Type Meaning

B Unsigned byte

SB signed byte

H Unsigned halfword (16 bits)

SH signed halfword (16 bits)

– omitted for word



Assembleur ARM : appel de fonction
Utilisation de la pile

Deux opérations possibles :
⊳ push : ajouter un élément ;
⊳ pop : enlever et retourner l’élément le plus récemment ajouté.

Gestion dans le processeur ARM :
□ registre R13 aussi appelé SP, «Stack Pointer» : il pointe sur l’emplacement de la pile en mémoire ;
□ deux instructions du jeu d’instruction ARM32 : LDM, «Load Multiple» et STM, «Store Multiple» ;
□ ces instructions sont adaptables :

⋄ choix du sens d’augmentation de la pile par incrémentation ou décrémentation des adresses ;
⋄ le registre pointe soit sur la fin de la pile, soit sur le prochain emplacement libre ;
⟹le système est adaptable aux besoins de différents systèmes d’exploitation.

□ l’assembleur GNU offre des pseudo-instructions qui s’appuient sur les instructions LDM et STM :
⋄ PUSH liste de registre : PUSH {R0, R5-R12} ;
⋄ POP liste de registres : POP {R0-R4, R6, R9-R12} ;

1000 SP=1000
996
992
988
984
980 Push R5

R5 = 1022

1000
1022996 SP=996

992
988
984
980



Assembleur ARM : appel de fonction
Branchement avec lien de retour

Après l’appel de la fonction, il faut retourner à l’exécution des instructions qui suivent :
□ le registre R14, «link register» : sert à stocker l’adresse de retour ;

□ l’instruction BL, «Branch with Link» : réalise un branchement aprés avoir stocké l’adresse de la pro-
chaine instruction dans LR ;

□ l’instruction BX : réalise le retour de fonction en sautant à l’adresse présente dans le registre LR ;
⊳ BL saute à l’adresse de 1 et sauvegarde l’adresse

de retour dans LR ;
⊳ BX saute à l’adresse stockée dans LR 2

@ ... other code ...
BL myfunc
MOV R1, #4
@ ... more code ...
-----------------------------
myfunc: @ do some work

BX LR
1

2

Et comment cela se passe si la fonction appelle une autre fonction ?

On utilise de nouveau dans la fonction myfunc, l’instruction BL :
⟹BL copie l’adresse de la prochaine instruction dans le registre LR
⟹ce qui écrase l’ancienne valeur contenue dans LR
⟹la fonction myfunc ne pourra plus retourner !

⟹il faut :
⊳ sauvegarder la valeur du registre LR dans la pile 3 avant le BL
⊳ restaurer la valeur du regsitre LR 4 avant de retourner avec BX

@ ... other code ...
BL myfunc
MOV R1, #4
@ ... more code ...

-----------------------------
myfunc: PUSH {LR} 3

@ do some work ...
BL myfunc2
@ do some more work...
POP {LR} 4

BX LR
myfunc2: @ do some work

BX LR



Différents modes d’exécution
□ 1 mode utilisateur,«usr», non privilégié ;

□ 5 modes pour des exceptions + 1 pour le système, priviégiés :
Mode Sigle Description

User usr mode normal d’exécution non privilégié

Interrupt _irq activé lors d’une exception causée par une interruption matérielle

Fast Interrupt _fiq activé lors d’une exception causée par une interruption matérielle à gérer rapidement

Abort _abt activé lors d’une exception d’accès à la mémoire

Undefined _und activé lorsqu’une instruction indéfinie est exécuté (une valeur sur 32bits qui ne
correspond à aucune instruction existante)

Supervisor _svc Software Interrupt: activé lors du reset ou lors d’un appel système

System sys mode privilégié pour le travail de l’OS.

□ le passage d’un mode à l’autre peut être fait manuellement en modifiant des bits du registre CPSR ;

□ les modes privilégiés sont activés pour traiter des interruptions ou des exceptions ;

□ le mode système, «sys», est un mode spécial pour accéder à des ressources protégées (comme la MMU
par exemple si disponible) ;

□ les modes traitant les interruptions disposent de registres dupliqués, remplaçant les registres qu’ils du-
pliquent durant l’exécution du traitement, ce qui évitent les collisions et corruptions.

□ les modes «usr» et «sys» partagent le même ensemble de registres.



Registres et mode d’exécution : 37 registres au total pour 7 modes d’opérations

r0
r1
r2
r3
r4
r5
r6
r7
r8 r8_fiq
r9 r9_fiq
r10 r10_fiq
r11 r11_fiq
r12 r12_fiq
r13 r13_fiq r13_svc r13_abt r13_irq r13_und
r14 r14_fiq r14_svc r14_abt r14_irq r14_und
r15

Frame pointer

Stack pointer
Link register

Program Counter

CPSR SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

mode Fast IRQ mode Supervisormode Usr/Sys

registres dupliqués

Registres dupliqués :
⊳ accélére le changement de contexte : pas besoin de les sau-

vegarder/restaurer.
⊳ chaque mode dispose d’un SP différent : des piles différentes

pour chaque mode.
Registres SPSR,«Saved Program Status Register» :
⊳ utilisés lors d’un changement de mode ;
⟹copie locale du CPSR,«Current Program Status Register»,

à restaurer en fin de traitement dans le mode spécial.

Le mode firq disposent de registres r8 à r12 :
pas de sauvegarde/restauration
⟹ plus rapide.



Mais ça marche comment les interruptions ?



Interruptions : gestion matérielle et logicielle
Assigner les interruptions

C’est le designer du SoC qui décide quel matériel peut produire quelle interruption : il s’agit d’interconnecter des circuits
avec le processeur.

⊳ SWI, «SoftWare Interrupt» ou svc, utilisée pour accéder à des fonctions privilégiées de l’OS ;
⊳ IRQ, assignées à des interruptions génériques comme des timers périodiques ;
⊳ FIQ, réservée pour une seule source qui nécessite un faible temps de réponse.

Les latences dans le traitement d’une interruption

La latence est l’intervalle de temps entre :
⊳ l’instant où le signal externe change d’état ;
⊳ la première instruction du traitement est chargé dans le processeur (fetch) ;

Le système essaie d’atteindre deux buts :
□ gérer plusieurs interruptions simultanément ;
□ minimiser la latence.

Deux métodes pour l’atteindre :
⊳ autoriser la gestion imbriquée, «nested», des interruptions ;
⊳ donner des priorités aux différentes sources d’interruption.

Activer/désactiver les interruptions

Les instructions dédiées :
MRS lire le CPSR

MSR stocker dans le CPSR

BIC effacer un bit

ORR opération OR

Activer une IRQ / FIRQ : MRS r1, cpsr
BIC r1, r1, #0x80/0x40
MSR cpsr_c,r1

Désactiver une IRQ / FIRQ : MRS r1, cpsr
ORR r1, r1, #0x80 / 0x40
MSR cpsr_c,r1



Interruptions : gestion de la pile du handler d’interruption
Pourquoi une pile ?

La pile est nécessaire pour le changement de context :
⊳ empiler les valeurs des registres pour les sauvegarder ;
⊳ dépiler les valeurs pour restaurer les registres ;
⊳ variables locales nécessaires pour la gestion des interruptions.
Il faut choisir :
□ la taille de la pile ;
□ sa position dans la mémoire.

User stack

Heap

Code

Interrupt Stack

Vector Table

Interrupt Stack

User stack

Heap

Code

Vector Table

Dans ce cas là, la table des vecteurs d’interruption
ne peut être écrasée lors d’un dépassement de pile.



Table des vecteurs d’interruption
La table des vecteurs d’interruption est une table d’adresses :
⊳ le processeur ARM saute à l’adresse associée à l’exception qui s’est déclenchée ;
⊳ à cette adresse se trouve une instruction de saut vers le code de traitement de cette exception.

Dans le tableau, on trouve une instruction de bran-
chement :
ldr pc, [pc,#_IRQ_HANDLER_OFFSET]

Où #_IRQ_HANDLER_OFFSET est le décalage
pour atteindre le code de gestion de l’interruption.

Adresse Exception Mode en entrée

0x00000000 Reset Superviseur

0x00000004 Undefined
instruction

Undefined

0x00000008 Software
interrupt

Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIRQ FIRQ

Cette table doit être remplie par l’OS lors du démarrage de la machine.



Exceptions : priorités et gestion de l’adresse de retour
Priorités

Exception Priorité bit I bit F

Reset 1 1 1

Data Abort 2 1 -

FIQ 3 1 1

IRQ 4 1 -

Prefetch Abort 5 1

SWI 6 1 -

Undefined Instruction 6 1 -
déclenchée lors de l’étape

«execute» du pipeline

indique si le handler de l’interruption peut être ou non interrompu

définie quelle exception est la plus importante parmi celles déclenchées

Décalage du registre PC sauvegardé dans le registre LR

Exception Adresse de retour

Reset aucune

Data Abort 2 LR - 8

FIQ, IRQ, prefetch Abort 2 LR - 4

SWI, Undefined Instruction LR

Dans certain cas, le registre PC a avancé au delà de l’ins-
truction qui a causé l’exception :
⊳ en 1 , il faut revenir en arrière de deux instructions par

rapport à la valeur du PC sauvegardée dans le registre
LR ;

⊳ en 2 , il faut revenir en arrière d’une seule instruction.
Ceci est du au pipeline d’exécution du processeur ARM.



Interruption : prise en compte dans le logiciel

Instruction 1
Instruction 2
Instruction 3
Instruction 4

Exécution
Programme

Instruction 5
Instruction 6
Instruction 7
Instruction 8

Exécution
Programme

Instruction 1
Instruction 2
Instruction 3
Instruction 4

handler
interruptionInterruption

⊳ Sauvegarde registres :
⊳ Blocage des interruptions ;
⊳ Passage en mode privilégié.

⊳ Restauration registres ;
⊳ Activation des interruptions ;
⊳ Passage en mode user.

PC⟸adresse handler

Entrée dans le handler d’exception :
⇒sauver l’adresse de l’instruction suivante dans le re-

gistre LR aproprié ;
⇒copier le CPSR dans le SPSR du nouveau mode ;
⇒changer le mode en modifiant les bits du CPSR ;
⇒aller chercher l’instruction suivante dans la table des

vecteurs d’interruption.

Sortie du handler d’exception :
⇒charger le registre LR dans le PC (avec le bon dé-

calage) ;
⇒restaurer le SPSR dans le CPSR, ce qui remettra

les bits de mode comme avant ;
⇒effacer le bit de blocage des interruptions s’il avait

été positionné.



Et sur un exemple d’interruption logicielle
ça donne quoi ?



Programmation assembleur ARM
On va utiliser l’assembleur as pour assembler l’exécutable :

@
@ Assembler program to print "Hello World!"
@ to stdout.
@
@ R0-R2 - parameters to linux function services
@ R7 - linux function number
@

.global _start @ Provide program starting
@ address to linker
@ Set up the parameters to print hello world
@ and then call Linux to do it.
_start: mov R0, #1 @ 1 = StdOut

ldr R1, =helloworld @ string to print
mov R2, #13
mov R7, #4
svc 0 @ Call linux to print

@ Set up the parameters to exit the program
@ and then call Linux to do it.
@ length of our string
@ linux write system call

mov R0, #0 @ Use 0 return code
mov R7, #1 @ Service command code 1

@ terminates this program
svc 0 @ Call linux to terminate

.data
helloworld: .ascii "Hello World!\n"

On utilise un appel système pour faire l’affichage

On utilise un appel système pour terminer le programme

l’étiquette _start indique au «linker» le point d’entrée du programme

.ascii indique à l’assembleur de mettre la chaîne dans le segment data,

et d’utiliser l’étiquette pour avoir son adresse

Assemblage et exécution :
xterm

$ as -o HelloWorld.o HelloWorld.s
$ ld -o HelloWorld HelloWorld.o
$ ./HelloWorld
Hello World!
$

⊳ l’instruction MOV déplace des données dans un registre.
⊳ le #4 indique une opérande directe, soit la valeur 4.
⊳ LDR R1, =helloworld charge le registre avec

l’adresse de la chaîne.
⊳ svc 0 réalise une interruption logicielle pour donner

le contrôle au noyau Linux.



Assembleur ARM : appel à Linux
Comment utiliser une fonctionnalité de l’OS ?

_start: mov R0, #1 @ 1 = StdOut
ldr R1, =helloworld @ string to print
mov R2, #13
mov R7, #4
svc 0 @ Call linux to print

Les registres R0 à R4 vont être utilisés pour passer
les paramètres à l’appel système.
Lors du retour de l’appel système, la valeur de re-
tour sera donnée dans le registre R0.

Ici, on fait appel à l’appel système print :
⊳ on indique dans le registre R0 la destination stdout ;
⊳ l’adresse de la chaîne à afficher est mise dans le registre R1 ;
⊳ le numéro de l’appel système est donné dans le registre R7, ici c’est la valeur 4 pour indiquer print.

On réalise ensuite une interruption logicielle avec l’instruction svc 0 :
⊳ le contrôle, le CPU, est transmis au code du traitement de cette interruption ;

⊳ le numéro de l’appel système permet de savoir quel code doit être appelé pour réaliser l’appel système ;

⊳ le code de traitement de l’interruption et de l’appel système est dans le noyau Linux ;

⊳ grâce au mécanisme d’interruption :
⋄ le programme ne sait pas où se trouve ce code de traitement : il n’y a même pas accès pour cause de

protection d’accès mémoire ;
⋄ le code de traitement est exécuté dans un mode protégé du processeur : il accède à toutes les res-

sources de la machine, comme l’écran pour y afficher du texte.
⋄ si le code de traitement de l’appel système est mis à jour, il n’y a pas de problème : le programme utilise

simplement un numéro pour l’identifier.



Utilisation de la commande objdump
On peut obtenir le désassemblage du programme

$ objdump -s -d HelloWorld.o

HelloWorld.o: file format elf32-littlearm

Contents of section .text:
0000 0100a0e3 14109fe5 0d20a0e3 0470a0e3 ......... ...p..
0010 000000ef 0000a0e3 0170a0e3 000000ef .........p......
0020 00000000 ....

Contents of section .data:
0000 48656c6c 6f20576f 726c6421 0a Hello World!.

Contents of section .ARM.attributes:
0000 41110000 00616561 62690001 07000000 A....aeabi......
0010 0801 ..

Disassembly of section .text:

00000000 <_start>:
0: e3a00001 mov r0, #1
4: e59f1014 ldr r1, [pc, #20] ; 20 <_start+0x20>
8: e3a0200d mov r2, #13
c: e3a07004 mov r7, #4

10: ef000000 svc 0x00000000
14: e3a00000 mov r0, #0
18: e3a07001 mov r7, #1
1c: ef000000 svc 0x00000000
20: 00000000 .word 0x00000000

Le segment de code

les différents segments du programme

valeur réelle de l’instruction

mnémonique

instructions en mode LittleEndian

L’intérêt du mode LittleEndian ?
pour convertir un entier sur 4 octets en 1 octet,
il suffit de lire que le premier octet.

Ici, on remarque que :
⊳ il n’y a plus d’étiquettes comme dans le source assembleur : elles sont remplacées par des adresses ;

⊳ les instructions sont indiquées avec leur valeur réelle, indiquée en hexadécimal en plus de leur
notation sous forme de mnémonique, comme e3a00001 pour mov r0, #1.



Analyse du désassemblage
Décomposition d’une instruction

00000000 <_start>:
0: e3a00001 mov r0, #1
4: e59f1014 ldr r1, [pc, #20] ; 20 <_start+0x20>
8: e3a0200d mov r2, #13
c: e3a07004 mov r7, #4

10: ef000000 svc 0x00000000

Soit l’instruction e3a00001 movr0, #1 :
Hex Digit e 3 a 0 0 0 0 1

Binary 1110 0011 1100 0000 0000 0000 0000 0001

□ Chaque instruction du code commence par un digit hexa à e :
⋄ champs sur 4bits indiquant une exécution conditionnelle suivant les valeurs du registre CSPR ;
⋄ ici, la valeur est e qui indique que l’instruction doit être réalisée de manière inconditionnelle

□ les 3bits suivants 001 indique le type des opérandes :
⋄ ici, un registre et une valeur immédiate ;

□ les 4bits suivants 1110 est l’opcode pour l’instruction MOV ;
□ le bit suivant 0 indique le type du paramètre pour le mode immédiat, qui ici ne sert pas ;

□ les 4bits suivants 0000 indiquent le registre R0 ;
□ les 4bits suivants 0000 indiquent un autre registre dans le cas où le MOV travaillerait sur deux

registres ce qui n’est pas le cas ici ;
□ les 12bits restants : la valeur immédiate, ici 1.



Assembleur ARM
Le source :
_start: mov R0, #1 @ 1 = StdOut

ldr R1, =helloworld @ string to print
mov R2, #13
mov R7, #4
svc 0 @ Call linux to print

est devenu :
00000000 <_start>:

0: e3a00001 mov r0, #1
4: e59f1014 ldr r1, [pc, #20] ; 20 <_start+0x20>
8: e3a0200d mov r2, #13
c: e3a07004 mov r7, #4

10: ef000000 svc 0x00000000

ldr R1, =helloworld est devenu ldr r1, [pc, #20]; 20 <_start+0x20>

L’assembleur :
⊳ l’étiquette =helloworld a été traduite en un décalage, «offset», depuis le «program counter» ;

⊳ la chaîne de caractères a été placée 20*4 octets plus loin que l’origine du programme indiqué par
l’étiquette _start, c-à-d :
1c: ef000000 svc 0x00000000
20: 00000000 .word 0x00000000

juste après le code.

⊳ l’accès à cette mémoire est fait depuis un registre contenant déjà une adresse, car une seule instruc-
tion ARM ne permet pas de charger une adresse entière sur 32bits directement dans un registre.



Utilisation de gdb
$ gdb helloword
GNU gdb (Raspbian 10.1-1.7) 10.1.90.20210103-git
Copyright (C) 2021 Free Software Foundation, Inc.
Reading symbols from helloword...
(gdb) list
1
2 @
3 @ Assembler program to print "Hello World!"
4 @ to stdout.
5 @
6 @ R0-R2 - parameters to linux function services
7 @ R7 - linux function number
8 @
9
10 .global _start @ Provide program starting
(gdb) l
11 @ address to linker
12 @ Set up the parameters to print hello world
13 @ and then call Linux to do it.
14 _start: mov R0, #1 @ 1 = StdOut
15 ldr R1, =helloworld @ string to print
16 mov R2, #13
17 mov R7, #4
18 svc 0 @ Call linux to print
19
20 @ Set up the parameters to exit the program
(gdb) l
21 @ and then call Linux to do it.
22 @ length of our string
23 @ linux write system call
24 mov R0, #0 @ Use 0 return code
25 mov R7, #1 @ Service command code 1
26 @ terminates this program
27 svc 0 @ Call linux to terminate
28 .data
29 helloworld: .ascii "Hello World!\n"
(gdb)

GDB

Command (short form) Description

list (l) List the program

break (b) line Set breakpoint at line

run (r) Run the program

step (s) Single-step program

continue (c) Continue running the program

quit (q or control-d) Exit gdb

control-c Interrupt the running program

info registers (i r) Print out the registers

info break Print out the breakpoints

delete n Delete breakpoint n

x /nuf expression Show contents of memory



Utilisation de gdb : désassemblage et pose de point d’arrêt, «breakpoints»
xterm

(gdb) disassemble _start
Dump of assembler code for function _start:

0x00010074 <+0>: mov r0, #1
0x00010078 <+4>: ldr r1, [pc, #20] ;

0x10094 <_start+32>
0x0001007c <+8>: mov r2, #13
0x00010080 <+12>: mov r7, #4
0x00010084 <+16>: svc 0x00000000
0x00010088 <+20>: mov r0, #0
0x0001008c <+24>: mov r7, #1
0x00010090 <+28>: svc 0x00000000
0x00010094 <+32>: muleq r2, r8, r0

End of assembler dump.
(gdb)

xterm
(gdb) b _start
Breakpoint 1 at 0x10074: file HelloWorld.s, line 14.
(gdb) r
Starting program:
/home/pi/ASMRASPI/hello_world_asm/helloword
Breakpoint 1, _start () at HelloWorld.s:14
14 _start: mov R0, #1 @ 1 = StdOut
(gdb) s
15 ldr R1, =helloworld @ string to print
(gdb) info registers
r0 0x1 1
r1 0x0 0
r2 0x0 0
r3 0x0 0
r4 0x0 0
r5 0x0 0
r6 0x0 0
r7 0x0 0
r8 0x0 0
r9 0x0 0
r10 0x0 0
r11 0x0 0
r12 0x0 0
sp 0x7efff620 0x7efff620
lr 0x0 0
pc 0x10078 0x10078 <_start+4>
cpsr 0x10 16
fpscr 0x0 0
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00010074
HelloWorld.s:14

breakpoint already hit 1 time

décalage

décalage



Utilisation de gdb : exécution, affichage registres, affichage mémoire
xterm

(gdb) r
Starting program: /home/pi/ASMRASPI/hello_world_asm/helloword

Breakpoint 1, _start () at HelloWorld.s:14
14 _start: mov R0, #1 @ 1 = StdOut
(gdb) s
15 ldr R1, =helloworld @ string to print
(gdb) info registers
r0 0x1 1
r1 0x0 0
r2 0x0 0
r3 0x0 0
r4 0x0 0
r5 0x0 0
r6 0x0 0
r7 0x0 0
r8 0x0 0
r9 0x0 0
r10 0x0 0
r11 0x0 0
r12 0x0 0
sp 0x7efff620 0x7efff620
lr 0x0 0
pc 0x10078 0x10078 <_start+4>
cpsr 0x10 16
fpscr 0x0 0
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00010074 HelloWorld.s:14

breakpoint already hit 1 time
(gdb) x /4ubft _start
0x10074 <_start>: 00000001 00000000 10100000 11100011
(gdb) x /4ubfi _start

0x10074 <_start>: mov r0, #1
=> 0x10078 <_start+4>: ldr r1, [pc, #20] ; 0x10094 <_start+32>

0x1007c <_start+8>: mov r2, #13
0x10080 <_start+12>: mov r7, #4

(gdb) x /4ubfx _start
0x10074 <_start>: 0x01 0x00 0xa0 0xe3
(gdb) x /4ubfd _start
0x10074 <_start>: 1 0 -96 -29



Architecture ARM et organisation mémoire
ARM family ARM architecture

ARM7 ARM v4

ARM9 ARM v5

ARM11 ARM v6

Cortex-A ARM v7-A

Cortex-R ARM v7-R

Cortex-M ARM v7-M

7

byte

0

15

half word

0

31

word

MSB
0

LSB

Big Endian vs Little Endian

31

word

MSB

Byte 0 Byte 1 Byte 2

0
LSB

Byte 3

Byte 3

Byte 2

Byte 1

Byte 0

Lower Address

Higher Address Byte 0

Big Endian

Byte 1

Byte 2

Byte 3

Little Endian

Instructions et accès mémoire :
ldr Load Word

ldrh Load unsigned Half Word

ldrsh Load signed Half Word

ldrb Load unsigned Byte

ldrsb Load signed Bytes

str Store Word

strh Store unsigned Half Word

strsh Store signed Half Word

strb Store unsigned Byte

strsb Store signed Byte



Retour sur les registres

Number Alias Purpose

R0 – General purpose

R1 – General purpose

R2 – General purpose

R3 – General purpose

R4 – General purpose

R5 – General purpose

R6 – General purpose

R7 – Holds Syscall Number

R8 – General purpose

R9 – General purpose

R10 – General purpose

R11 FP Frame Pointer

Special Purpose Registers

R12 IP Intra Procedural Call

R13 SP Stack Pointer

R14 LR Link Register

R15 PC Program Counter

CPSR – Current Program Status Register



Le registre d’état ou CPSR, «Current Program Status Register»
31 30 29 28 27 - 24 - 19 - 16 - 9 8 7 6 5 4 - 0

N Z C V Q J GE E A I F T M

□ Negative : N vaut 1 si la valeur est négative, et 0 si la valeur est positive ;
□ Zero : Z vaut 1 si le résultat est zéro (par exemple lors d’une comparaison), et 1 si le résultat n’est pas zéro ;
□ Carry : indique pour

⋄ une opération d’addition s’il y a un bit de retenu comme résultat du calcul, c-à-d un dépassement, «overflow», de
capacité ;

⋄ une opération de soustraction s’il y a un bit de retenu, c-à-d un dépassement, «underfow», de capacité ;
⋄ une opération de décalage, le bit qui a été décalé vers l’extérieur ;

□ oVerflow : pour l’addition et la soustraction, indique un «overflow».
Pour certaines autres instructions, ce bit peut être utilisé pour indiquer une erreur.

□ les bits liés aux interruptions :
⋄ I : lorsqu’il est à 1 : désactive les IRQ, «interrupt request» ;
⋄ F : lorsqu’il est à 1 : désactive les FIQ, «Fast interrupt request» (par exemple : traiter les paquets réseau, les mou-

vements de la souris) ;
⋄ A : lorsqu’il est à 1 : désactive les abandons ;

□ les bits liés aux instructions :
⋄ Thumb : lorsqu’il est à 1 : indique des instructions compactes sur 16 bits ;
⋄ Jazelle : lorsqu’il est à 1 : mode obsolète pour l’exécution directe de bytecode Java ;

□ les autres bits :
⋄ Q : lorsqu’il est à 1 : indique un «underflow» ;
⋄ GE : contrôle le «Greater than Equal» dans le traitement des données SIMD ;
⋄ E : contrôle l’«endianness» pour le traitement des données.

□ M : indique si le processeur est en mode «user» ou «supervisor».



Branchement sur condition
On consulte le registre CPSR pour déterminer la condition :
B{condition} label

Condition Code Meaning (for cmp or subs) Status of Flags

EQ Equal Z==1

NE Not Equal Z==0

GT Signed Greater Than (Z==0) && (N==V)

LT Signed Less Than N!=V

GE Signed Greater Than or Equal N==V

LE Signed Less Than or Equal (Z==1) || (N!=V)

CS or HS Unsigned Higher or Same (or Carry Set) C==1

CC or LO Unsigned Lower (or Carry Clear) C==0

MI Negative (or Minus) N==1

PL Positive (or Plus) N==0

AL Always executed –

NV Never executed –

VS Signed Overflow V==1

VC No signed Overflow V==0

HI Unsigned Higher (C==1) && (Z==0)

LS Unsigned Lower or same (C==0) || (Z==0)



Le jeu d’instruction ARM
Format d’une instruction

MNEMONIC{S}{condition} {Rd}, Operand1, Operand2

MNEMONIC Short name (mnemonic) of the instruction

{S} An optional suffix. If S is specified the condition flags are updated on the result of the operation

{condition} Condition that is needed to be met in order for the instruction to be executed according to bit(s) of the CPSR

{Rd} Register (destination) for storing the result of the instruction

Operand1 First operand: either a register or an immediate value

Operand2 Second (flexible) operand: can be an immediate value (number) or a register with an optional shift

La seconde opérande est flexible, elle peut être sous différentes formes : une valeur immédiate, un registre ou un registre avec un décalage :
#123 Immediate value (with limited set of values)

Rx Register x (like R1, R2, R3 ...)

Rx, ASR n Register x with arithmetic shift right by n bits (1 <= n <= 32)

Rx, LSL n Register x with logical shift left by n bits (0 <= n <= 31)

Rx, LSR n Register x with logical shift right by n bits (1 <= n <= 32)

Rx, ROR n Register x with rotate right by n bits (1 <= n <= 31)

Rx, RRX Register x with rotate right by one bit, with extend

Exemples d’instructions :
ADD R0, R1, R2 Adds contents of R1 (Operand1) and R2 (Operand2 in a form of register) and stores the result into R0 (Rd)

ADD R0, R1, #2 Adds contents of R1 (Operand1) and the value 2 (Operand2 in a form of an immediate value) and stores the result into R0 (Rd)

MOVLE R0, #5 Moves number 5 (Operand2, because the compiler treats it as MOVLE R0, R0, #5) to R0 (Rd) ONLY if the condition LE (Less Than or Equal)

is satisfied ⟹ CPSR[N], negative, bit at 1 (result of a previous instruction CMP)

MOV R0, R1, LSL #1 Moves the contents of R1 (Operand2 in a form of register with logical shift left) shifted left by one bit to R0 (Rd). So if R1 had value 2, it gets

shifted left by one bit and becomes 4. 4 is then moved to R0.



Les instructions les plus utilisées

Instruction Description Instruction Description

MOV Move data EOR Bitwise XOR

MVN Move and negate LDR Load

ADD Addition STR Store

SUB Subtraction LDM Load Multiple

MUL Multiplication STM Store Multiple

LSL Logical Shift Left PUSH Push on Stack

LSR Logical Shift Right POP Pop off Stack

ASR Arithmetic Shift Right B Branch

ROR Rotate Right BL Branch with Link

CMP Compare BX Branch and eXchange

AND Bitwise AND BLX Branch with Link and eXchange

ORR Bitwise OR SWI/SVC System Call



Instructions Load/Store

LDR Ra , [Rb]

STR Ra , [Rb]

la valeur à l’indresse indiquée dans Rb

est chargée dans Ra

la valeur de Ra est stockée

à l’adresse indiquée dans Rb

LDR R2, [R0] @ [R0] - origin address is the value found in R0.
STR R2, [R1] @ [R1] - destination address is the value found in R1.

Exemple de code

.data /* the .data section is dynamically created and its addresses is not easily known */
var1: .word 3 /* variable 1 in memory */
var2: .word 4 /* variable 2 in memory */

.text /* start of the text (code) section */

.global _start

_start:
ldr r0, adr_var1 @ load the memory address of var1 via label adr_var1 into R0
ldr r1, adr_var2 @ load the memory address of var2 via label adr_var2 into R1
ldr r2, [r0] @ load the value (0x03) at memory address found in R0 to register R2
str r2, [r1] @ store the value found in R2 (0x03) to the memory address found in R1
bkpt

adr_var1: .word var1 /* address to var1 stored here */
adr_var2: .word var2 /* address to var2 stored here */

Une instruction Load/Store peut utiliser un «offset» :
⊳ avec une valeur immédiate ;
⊳ la valeur d’un registre (comme sur l’exemple plus haut) ;
⊳ la valeur d’un registre avec un décalage ;



Assemblage de l’exemple et analyse du code produit
xterm

$ arm-none-eabi-as exemple.S
$ ll
total 16K
drwxrwxr-x 2 pef pef 4.0K Nov 6 20:18 ./
drwxr-x--- 85 pef pef 4.0K Nov 6 20:18 ../
-rw-rw-r-- 1 pef pef 772 Nov 6 20:18 a.out
-rw-rw-r-- 1 pef pef 741 Nov 6 20:17 exemple.S
$ arm-none-eabi-objdump -d a.out

a.out: file format elf32-littlearm

Disassembly of section .text:

00000000 <_start>:
0: e59f000c ldr r0, [pc, #12] @ 14 <adr_var1>
4: e59f100c ldr r1, [pc, #12] @ 18 <adr_var2>
8: e5902000 ldr r2, [r0]
c: e5812000 str r2, [r1]

10: e1200070 bkpt 0x0000

00000014 <adr_var1>:
14: 00000000 .word 0x00000000

00000018 <adr_var2>:
18: 00000004 .word 0x00000004

adressage relatif par rapport au registre pc

Pour calculer la valeur 12 de l’accès par offset de l’instruction à l’adresse 0, on sait que :
⊳ lors de l’exécution de l’instruction à l’adresse 0, le pc est déjà, deux instructions en avant ;
⊳ chaque instruction est sur 32bits ou 4 octects ;
⊳ la donnée «addr_var1» est à l’adresse 20, «14 en hexa», soit un décalage de 20−(2∗4) = 12 par rapport à la valeur courante

du pc
Pour l’instruction à l’adresse 4, c’est la même chose avec une donnée «addr_var2» en adresse 24, «18 en hexa».



Autre exemple
Utilisation d’un registre et d’un offset avec mise à jour du registre

.data
var1: .word 3
var2: .word 4

.text

.global _start

_start:
ldr r0, adr_var1 @ load the memory address of var1 via label adr_var1 into R0
ldr r1, adr_var2 @ load the memory address of var2 via label adr_var2 into R1
ldr r2, [r0] @ load the value (0x03) at memory address found in R0 to register R2
str r2, [r1, #2] @ address mode: offset. Store the value found in R2 (0x03) to the memory ad

dress found in R1 plus 2. Base register (R1) unmodified.
str r2, [r1, #4]! @ address mode: pre-indexed. Store the value found in R2 (0x03) to the memory

address found in R1 plus 4. Base register (R1) modified: R1 = R1+4
ldr r3, [r1], #4 @ address mode: post-indexed. Load the value at memory address found in R1 to

register R3. Base register (R1) modified: R1 = R1+4
bkpt

adr_var1: .word var1
adr_var2: .word var2

Différents accès

On peut utiliser la valeur d’un registre pour servir d’offset :
str r2, [r1, r2] @ address mode: offset. Store the value found in R2 (0x03) to the memory address
found in R1 with the offset R2 (0x03). Base register unmodified.

On peut modifier l’adresse de base avant de l’utiliser :
str r2, [r1, r2]! @ address mode: pre-indexed. Store value found in R2 (0x03) to the memory address
found in R1 with the offset R2 (0x03). Base register modified: R1 = R1+R2.

On peut modifier l’adresse de base après de l’utiliser :
ldr r3, [r1], r2 @ address mode: post-indexed. Load value at memory address found in R1 to register
R3. Then modify base register: R1 = R1+R2.



1 GDB : une meilleure interface avec dashboard
L’interface dashboard est récupérable à https://github.com/cyrus-and/gdb-dashboard

Cette extension de gdb est écrite en Python et ajoute les fonctionnalités suivantes :
□ la commande dashboard affiche un écran composé de :

⋄
Assembly
0x000006e0 ? isb sy
0x000006e4 ? cpsid i
0x000006e6 ? bx lr
0x000006e8 ? ldr r3, [pc, #52] ; (0x720)
0x000006ea ? ldr r2, [pc, #56] ; (0x724)
0x000006ec ? ldr r1, [pc, #56] ; (0x728)
0x000006ee ? mov r0, sp
0x000006f0 ? cmp r0, r2
0x000006f2 ? bhi.n 0x6fc
0x000006f4 ? cmp r0, r3
Breakpoints
Expressions
History
Memory
$sp

0x200001b0 00 00 00 00 50 08 00 20 06 00 00 00 8d 06 00 00 ····P···········
0x200001c0 00 00 00 00 fd ff ff ff 01 00 00 00 08 08 00 20 ················
0x200001d0 00 00 00 10 00 ed 00 e0 08 00 00 00 d3 01 00 00 ················
0x200001e0 7c 06 00 00 00 00 00 41 95 01 00 00 00 00 00 00 |······A········

Registers
r0 0x20000828 r4 0x20000808 r8 0x00000008 r12 0x20000770 xPSR 0x410e000e primask 0x00
r1 0x20000850 r5 0x00000000 r9 0x00000009 sp 0x200001b0 fpscr 0x00000000 basepri 0x00
r2 0x10000000 r6 0x20000850 r10 0x0000000a lr 0x000002b1 msp 0x200001b0 faultmask 0x00
r3 0x00000000 r7 0x00000007 r11 0x0000000b pc 0x000006e0 psp 0x200007a8 control 0x00

Source
Stack

[0] from 0x000006e0
Threads

[1] id 0 from 0x000006e0
Variables



GDB : Contrôle de l’exécution
ctrl-c interrompt l’exécution du program

c/continue reprend l’exécution

s/step avance d’une insrustion dans une fonction

s 10 avance de 10 instructions

n/next avance à la prochaine instruction dans la fonction

u/until 20 avance jusqu’à la ligne 20 du fichier courant

f/finish avance jusqu’à la fin de la fonction

run démarre le programme

b/break fonc mets un «breakpoint» lors de l’exécution de la fonc

b main.c:fonc mets un «breakpoint» sur fonc du fichier «main.c»

b main.c:18 if var > 20 breakpoint seulement si var > 20

tbreak main se déclenche une fois et s’efface ensuite

info breakpoints donne la liste des breakpoints

ignore 3 20 ignorer 20 fois le breakpoint 3

disable 3 désactive le breakpoint 3

delete 3 supprime le breakpoint 3

monitor reset halt réinitialise le firmware dans OpenOCD et s’arrête après le reset



GDB : observer et prendre connaissance

info locals les variables locales

info variables les variables globales

info args les arguments de la fonction

info registers les valeurs des registres

watch var surveille les modifications de var

watch montableau[10].val surveille le champ val de la 11ème structure

watch *0xdeadcafe surveille le contenu de la mémoire par adresse

watch var if var > 20 surveillance conditionnelle

watch var if var - 10 > 20 avec une expression

info watchpoints donne la liste des watchpoints

delete 5 supprime la 5ème surveillance

bt «backtrace»: l’historique des appels de fonction

frame la «frame» courante dans la pile

up remonter dans la pile d’appel

down descendre dans la pile d’appel



GDB : afficher et examiner les contenus
p/print /FMT expression a (address) o (octal)

c (char) t (binary int)

d (decimal int) u (unsigned decimal int)

f (float) x (hex int)

p var affiche la valeur de var

p x+y affiche le résultat de l’expression

p/x &main affiche l’adresse de la fonction main

p/x $r4 affiche le contenu du registre «r4»

p/a *(uint32_t[8] *) 0xdeadbabe affiche un tableau de 8 entier l’adresse donnée

x /FMT adresse x (hex) b (byte)

d (decimal) h (halfword 2B)

u (unsigned decimal) w (word 4B)

f (float) a (address)

i (instruction) c (char)

s (string) z (padded hex)

x var affiche l’adresse de var

x/4c 0xdeadbabe affiche 4 char à l’adresse indiquée

x/4xw &main affiche 4 mots en hexa à l’adresse de main



GDB : d’autres fonctions

Afficher le source et les instructions machine
list affiche le source à l’endroit courant

list *0x12341234 affiche le source à l’adresse indiquée

list main.c:func affiche le source de la fonction définie dans le fichier main.c

disas func desassemble la fonction

Rechercher dans la mémoire
find /b 0x0,0x10000,'H','e','l','l','o' chercher une séquence entre 0x0 et 0x10000

⟹0x581f 1 pattern found

x/s 0x581f examiner la chaine à l’adresse 0x581f

⟹"Hello world !"

Charger la table des Symboles
symbol-file mon_exec.elf charge un nouveau fichier



Déboguer le SoC
DAP, «Debug Access Port» : l’interface de déboguage

□ des registres permettant d’effectuer des opérations sur le processeur ;
□ des broches permettant à un débogueur externe de s’y connecter ;
⟹lire/écrire la mémoire et les registres du processeur.

La connexion au DAP

□ le JTAG, «Joint Test Action Group», standard industriel IEEE 1149.1 pour le TAP, «Test Access Port» :
⊳ teste les PCBs après leur fabrication ;
⊳ au moins 4 broches

⋆ TDI, «Test Data In» ;
⋆ TDO, «Test Data Out» ;
⋆ TCK, «Test Clock» ;

⋆ TMS, «Test Mode Select» ;
⋆ + 1 optionnelle TRST, «Test Reset» ;

⊳ des registres à décalage + FSM, «Finite State Machine» pour échanger des données ;
□ le SWD, «Serial Wire Debug» :

⋄ similaire au JTAG mais avec moins de broches :
⋆ SWDIO : broche d’E/S échantillonée su «front montant» ;
⋆ SWCLK : référence de temps pour ces E/S ;

La sonde, ou «probe» de déboguage

□ FTDI, «Future Technology Devices International» :
⊳ pont avec l’USB ;
⊳ processeur MPSSE, «Multi Protocol Synchronous Serial Engine» : UART, JTAG, SWD ;

□ CMSIS-DAP : version ARM d’un DAPLink :
⊳ utilise un micro-contrôleur dédié avec un firmware dédié, connecté au micro-contrôleur à déboguer ;
⊳ le micro-contrôleur dédié assure l’interface USB et le dialogue SWD/JTAG avec l’autre MCU.



OpenOCD, «Open On-Chip Debugger»
OpenOCD assure le contrôle de l’interface de déboguage :
□ Version SWD :

openocd
Server

3333
TCPgdb

4444
TCP

telnet

MCU
interface

USB Target
MCU

SWD

□ le SWD en détail sur le microbit v2 :

□ Version JTAG :

openocd
Server

3333
TCPgdb

4444
TCP

telnet

JTAG
probe

USB Target
MCU

jtag

OpenOCD ouvre deux ports TCP :
⊳ en 4444 : pour le contrôler ;
⊳ en 3333 : pour les échanges avec gdb ;
On peut aussi contrôler OpenOCD depuis gdb avec la commande «monitor».



OpenOCD
Il est configurable en TCL «Tool Command Language» :

xterm
$ openocd -f interface/cmsis-dap.cfg -f target/nrf52.cfg -c "nrf52.cpu configure -rtos RIOT"

le modèle du CPU
le nom du CPU

La sortie de la commande :
xterm

Open On-Chip Debugger 0.12.0-01004-g9ea7f3d64-dirty (2025-11-12-10:33)
Licensed under GNU GPL v2
For bug reports, read

http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : Using CMSIS-DAPv2 interface with VID:PID=0x0d28:0x0204,
serial=9906360200052820fa0bc0bc9fe7a1ee000000006e052820
Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: Test domain timer supported
Info : CMSIS-DAP: FW Version = 2.1.0
Info : CMSIS-DAP: Serial# = 9906360200052820fa0bc0bc9fe7a1ee000000006e052820
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 0
Info : CMSIS-DAP: Interface ready
Info : clock speed 1000 kHz
Info : SWD DPIDR 0x2ba01477
Info : [nrf52.cpu] Cortex-M4 r0p1 processor detected
Info : [nrf52.cpu] target has 6 breakpoints, 4 watchpoints
Info : starting gdb server for nrf52.cpu on 3333
Info : Listening on port 3333 for gdb connections
Info : accepting 'gdb' connection on tcp/3333
Error: No symbols for RIOT
Info : nRF52833-xxAA(build code: A0) 512kB Flash, 128kB RAM

Ici, on lance OpenOCD avec les oprtions suivantes :
⊳ utilisation de l’interface CMSIS-DAP ⟹ utilisation du microbit ;
⊳ le microbit v2 utilise un Cortex M0 de chez nrf, le 52833, d’où le fichier nrf52.cfg ;
⊳ on utilise les connaissances supplémentaires pour l’analyse d’un RTOS avec l’option -rtos RIOT.



OpenOCD
Le script nrf52.cfg :
#
# Nordic nRF52 series: ARM Cortex-M4 @ 64 MHz
#

source [find target/swj-dp.tcl]

if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME

} else {
set _CHIPNAME nrf52

}

# Work-area is a space in RAM used for flash programming
# By default use 16kB
if { [info exists WORKAREASIZE] } {

set _WORKAREASIZE $WORKAREASIZE
} else {

set _WORKAREASIZE 0x4000
}

if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID

} else {
set _CPUTAPID 0x2ba01477

}

swj_newdap $_CHIPNAME cpu -expected-id $_CPUTAPID
dap create $_CHIPNAME.dap -chain-position $_CHIPNAME.cpu

set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME cortex_m -dap $_CHIPNAME.dap

adapter speed 1000ZZ
...

nommage du CPU



Des usages avancés
Désassemblage et code

xterm
(gdb) disassemble /s main
>>> disassemble /s main
Dump of assembler code for function main:
/home/pef/PROJECTS/EMBEDDED/JTAG/RIOT/examples/networking/dtls/dtls-echo/main.c:
35 {
36 /* we need a message queue for the thread running the shell in order to
37 * receive potentially fast incoming networking packets */
38 msg_init_queue(_main_msg_queue, MAIN_QUEUE_SIZE);

0x000007a0 <+0>: add.w r1, r0, #8

35 {
0x000007a4 <+4>: ldr.w r0, [r3, r2, lsl #2]

36 /* we need a message queue for the thread running the shell in order to
37 * receive potentially fast incoming networking packets */
38 msg_init_queue(_main_msg_queue, MAIN_QUEUE_SIZE);

0x000007a8 <+8>: cbz r0, 0x7ca <main+42>
0x000007aa <+10>: ldr r0, [r0, #0]

>>> disassemble /r main
Dump of assembler code for function main:

0x000007a0 <+0>: f100 0108 add.w r1, r0, #8
0x000007a4 <+4>: f853 0022 ldr.w r0, [r3, r2, lsl #2]
0x000007a8 <+8>: b178 cbz r0, 0x7ca <main+42>
0x000007aa <+10>: 6800 ldr r0, [r0, #0]

les octets sont en «instruction order», ici en «little endian»

>>> disassemble /b main
Dump of assembler code for function main:

0x000007a0 <+0>: 00 f1 08 01 add.w r1, r0, #8
0x000007a4 <+4>: 53 f8 22 00 ldr.w r0, [r3, r2, lsl #2]
0x000007a8 <+8>: 78 b1 cbz r0, 0x7ca <main+42>
0x000007aa <+10>: 00 68 ldr r0, [r0, #0]

les octets sont en «memory order»



Afficher les contenus des registres
xterm

>>> p $sp
$1 = (void *) 0x20000200 <remote>
>>> p $pc
$2 = (void (*)()) 0xb1c <_msg_send+16>

Modifier le contenu de registre

>>> set $pc = main
>>> p $pc
$3 = (void (*)()) 0x7a0 <main>
>>> set $pc = 0x20000200
>>> p $pc
$4 = (void (*)()) 0x20000200 <remote>

utiliser un symbole

>>> info files
Symbols from "/home/pef/PROJECTS/EMBEDDED/JTAG/RIOT/examples/networking/dtls/dtls-echo/bin/microbit-
v2/dtls_echo.elf".
Extended remote target using gdb-specific protocol:

`/home/pef/PROJECTS/EMBEDDED/JTAG/RIOT/examples/networking/dtls/dtls-echo/bin/microbit-
v2/dtls_echo.elf', file type elf32-littlearm.

Entry point: 0x15a8
0x00000000 - 0x00015c80 is .text
0x00015c80 - 0x00015c88 is .ARM.exidx
0x20000000 - 0x20000200 is .stack
0x20000200 - 0x20000370 is .relocate
0x20000370 - 0x20005910 is .bss
0x20005910 - 0x20005910 is .noinit



OpenOCD : support des RTOS
Dans OpenOCD, on active le support du RTOS et on indique la nature du RTOS :

xterm
$ openocd -f interface/cmsis-dap.cfg -f target/nrf52.cfg -c "nrf52.cpu configure -rtos RIOT"

□ FreeRTOS symbols
pxCurrentTCB, pxReadyTasksLists, xDelayedTaskList1, xDelayedTaskList2,
pxDelayedTaskList, pxOverflowDelayedTaskList, xPendingReadyList,
uxCurrentNumberOfTasks, uxTopUsedPriority, xSchedulerRunning.

□ RIOT symbols
sched_threads, sched_num_threads, sched_active_pid, max_threads,
,c_tcb_name_offset.

□ Zephyr symbols
_kernel, _kernel_openocd_offsets, _kernel_openocd_size_t_size



Obtenir des infos sur RIOT
Assembly
0x00000786 sched_run+10 cbnz r3, 0x7d8 <sched_run+92>
0x00000788 sched_run+12 cbz r5, 0x790 <sched_run+20>
0x0000078a sched_run+14 mov r0, r5
0x0000078c sched_run+16 bl 0x710 <_unschedule>
0x00000790 sched_run+20 bl 0xbe4 <sched_arch_idle>
0x00000794 sched_run+24 ldr r3, [r4, #0]
0x00000796 sched_run+26 cmp r3, #0
0x00000798 sched_run+28 beq.n 0x790 <sched_run+20>
0x0000079a sched_run+30 movs r0, #0
0x0000079c sched_run+32 ldr r2, [pc, #68] @ (0x7e4 <sched_run+104>)
Breakpoints

[6] break at 0x0000086c in /home/pef/RIOT/core/include/thread.h:417
for sched.c:sched_switch

Expressions
History

$$2 = 0x200002ac <receiver_stack+12>: 536871596
$$1 = 0x200002c0 <receiver_stack+32>: 536871616
$$0 = <optimized out>

Memory
Registers
r0 0x20000e70 r4 0x200014a8 r8 0x00000008 r12 0x00000000 xPSR 0x6100000e primask 0x01
r1 0x200014f0 r5 0x20000e70 r9 0x00000009 sp 0x200001b0 fpscr 0x00000000 basepri 0x00
r2 0x20000aa0 r6 0x200014f0 r10 0x0000000a lr 0x00000795 msp 0x200001b0 faultmask 0x00
r3 0x00000000 r7 0x00000000 r11 0x0000000b pc 0x00000794 psp 0x20000e08 control 0x00
Source
155 active_thread = NULL;
156 }
157
158 do {
159 sched_arch_idle();
160 } while (!runqueue_bitcache);
161 }
162
163 sched_context_switch_request = 0;
164
Stack

[0] from 0x00000794 in sched_run+24 at /home/pef/RIOT/core/sched.c:160
[1] from 0x00000b94 in isr_pendsv+12 at /home/pef/RIOT/cpu/cortexm_common/thread_arch.c:306



Obtenir des infos sur RIOT
Threads

[1] id 0 from 0x00000794 in sched_run+24 at /home/pef/RIOT/core/sched.c:160
Variables

loc active_thread = 0x0 <tsrb_add>: {sp = 0x20000200 <heap_top> "l\033",status = 153,priority = 12
'\f',pid = 0…, previous_thread = 0x20000e70 <cipher_stack+976>: {sp = 0x20000de4 <cipher_stack+836>
"\377\377\377\377\360\02…, nextrq = <optimized out>, next_thread = <optimized out>

>>> p active_thread
$22 = (thread_t *) 0x0 <tsrb_add>
>>> ptype tsrb_add
type = int (tsrb_t *, const uint8_t *, size_t)
>>> ptype/o tsrb_add
type = int (tsrb_t *, const uint8_t *, size_t)
>>> p *active_thread
$23 = {

sp = 0x20000200 <heap_top> "l\033",
status = 153,
priority = 12 '\f',
pid = 0,
rq_entry = {

next = 0xc35 <nmi_handler>
},
wait_data = 0xbf1 <hard_fault_default>,
msg_waiters = {

next = 0xc45 <mem_manage_default>
},
msg_queue = {

read_count = 3157,
write_count = 3173,
mask = 0

},
msg_array = 0x0 <tsrb_add>,
stack_start = 0x0 <tsrb_add>,
name = 0x0 <tsrb_add>,
stack_size = 3029

}



Obtenir des infos sur RIOT
>>> ptype/o thread_t
type = struct _thread {
/* 0 | 4 */ char *sp;
/* 4 | 1 */ thread_status_t status;
/* 5 | 1 */ uint8_t priority;
/* 6 | 2 */ kernel_pid_t pid;
/* 8 | 4 */ clist_node_t rq_entry;
/* 12 | 4 */ void *wait_data;
/* 16 | 4 */ list_node_t msg_waiters;
/* 20 | 12 */ cib_t msg_queue;
/* 32 | 4 */ msg_t *msg_array;
/* 36 | 4 */ char *stack_start;
/* 40 | 4 */ const char *name;
/* 44 | 4 */ int stack_size;

/* total size (bytes): 48 */
}

>>>



ARM Semi-hosting : exécuter du code sans périphérique
□ mécanisme permettant à un processeur ARM d’utiliser les ressources de l’hôte pour ses E/S ;

⟹Très utile lors du développement, lorsque l’on ne dispose pas d’une UART, d’un écran ou de système
de fichier ;

□ fonctionnement :
⊳ la cible charge des valeurs dans les registres :

⋆ r0 : la nature de l’ordre, par exemple 0x04 pour écrire un message sur la sortie standard ;
⋆ r1 : un paramètre pour l’ordre donné, par exemple l’adresse de la chaîne pour la sortie ;

⊳ la cible exécute une instructions BKPT en ARMv7 (Cortex-M) :
⊳ le débogueur, «gdb», les intercepte ;
⊳ le débogeur exécute les ordres demandés sur l’hôte ;
⊳ un résultat est inséré en retour dans les registres de la cible et un résultat peut être affiché dans

la sortie d’OpenOCD (si un affichage a été demandé).
□ Inconvénient : ralentit le code ;

Attention
L’instruction «BKPT» ne fonctionne que si un débogueur matériel comme OpenOCD+SWD est
connecté.
⟹Sinon, le programme plante !



Exemple de Semi-hosting
.syntax unified @ Use unified assembly syntax
.cpu cortex-m4 @ Target Cortex-M4 (nRF52833)
.thumb @ Use Thumb instruction set

.section .text

.global _start @ Entry point for the linker

_start:
@ Initialize stack pointer (adjust based on linker script)
ldr r0, =0x20010000 @ Example stack top (64KB SRAM, adjust per linker)
mov sp, r0

@ Prepare semihosting call for SYS_WRITE0
movs r0, #0x04 @ SYS_WRITE0 operation code
ldr r1, =message @ Pointer to null-terminated string
bkpt 0xAB @ Trigger semihosting breakpoint

@ Infinite loop to keep program running
loop:
b loop

.section .rodata
message:
.asciz "Hello from micro:bit v2 via semihosting!\n" @ Null-terminated string

L’appel du semi-hosting

Dans gdb :
xterm

>>> monitor arm semihosting enable

Dans OpenOCD :
xterm

Info : [nrf52.cpu] Cortex-M4 r0p1 processor detected
Info : [nrf52.cpu] target has 6 breakpoints, 4 watchpoints
Info : starting gdb server for nrf52.cpu on 3333
Info : Listening on port 3333 for gdb connections
Info : accepting 'gdb' connection on tcp/3333
Info : nRF52833-xxAA(build code: A0) 512kB Flash, 128kB RAM
Hello from micro:bit v2 via semihosting!



Écrire et exécuter un programme en RAM seulement
On va modifier le fichier utilisé par le linker :

MEMORY
{

RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 128K
}

SECTIONS
{

.text :
{

*(.text*) /* Code */
*(.rodata*) /* Read-only data (e.g., string for SYS_WRITE0) */

} > RAM

.bss :
{

*(.bss*) /* Uninitialized data */
} > RAM

/* Stack at the top of SRAM */
_stack_top = ORIGIN(RAM) + LENGTH(RAM);

}

Seule la RAM est définie

On place le début de la pile à la fin de la mémoire

□ Une seule zone mémoire : la RAM ;

□ placement des sections .text, .rodata et .bss en RAM dans cet ordre ;

□ inutile d’initialiser la mémoire de la section .bss dans le code.

Attention
La table des vecteurs d’interruption est toujours dans la flash...



Juste en RAM
.syntax unified
.cpu cortex-m4
.thumb

.section .text

.global _start

_start:
/* Initialize stack pointer to top of SRAM */
ldr r0, =_stack_top /* Defined in linker script (0x20020000) */
mov sp, r0

/* Semihosting call for SYS_WRITE0 */
movs r0, #0x04 /* SYS_WRITE0 operation code */
ldr r1, =message /* Pointer to string in RAM */
bkpt 0xAB /* Trigger semihosting */

/* Infinite loop */
loop:
b loop

.section .rodata
message:
.asciz "Hello from micro:bit v2 via semihosting in RAM!\n"


